【題目】如圖1,在△ABC中,AB=AC,以△ABC的邊AB為直徑的⊙O角邊BC于點(diǎn)E,過(guò)點(diǎn)EDEACACD.

(1)求證:DE是⊙O的切線;

(2)如圖2,若線段AB、DE的延長(zhǎng)線交于點(diǎn)F,C=75°,CD=2﹣,求⊙O的半徑和EF的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)半徑為2,EF=

【解析】分析:(1)連接OE,AE,利用圓周角定理的“三線合一”證明;(2)過(guò)點(diǎn)OOMAC,設(shè)OMx,用含x的式子表示出AMDM,AC的長(zhǎng),ACAMMD=2﹣,列方程求x,得到圓的關(guān)系,再在RtOEF中求EF.

詳解:(1)如圖1,連接OE,AE,

AB是⊙O的直徑,∴∠EBA=90°,

AEBCABAC,∴BECE

AOOB,∴OEAC,

DEAC,∴DEOE,

DE是⊙O的切線;

(2)如圖2,過(guò)點(diǎn)OOMAC

∵∠C=75°,ABAC,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,

設(shè)OMx,則OAOBOE=2x,AMxODDEDEAC,

∴四邊形OEDM是矩形,∴DMOE=2x,

OEAC,可得:4xx+2x+2﹣x=1,

OEOB=2,即半徑為2,

在直角△OEF中,∠EOF=∠A=30°,

tan30°=,

EF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB、CD交于點(diǎn)O,AOE=4DOE,AOE的余角比∠DOE10°(題中所說(shuō)的角均是小于平角的角).

(1)求∠AOE的度數(shù);

(2)請(qǐng)寫出∠AOC在圖中的所有補(bǔ)角;

(3)從點(diǎn)O向直線AB的右側(cè)引出一條射線OP,當(dāng)∠COP=AOE+DOP時(shí),求∠BOP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】永定土樓是世界文化遺產(chǎn)福建土樓的組成部分,是閩西的旅游勝地.永定土樓模型深受游客喜愛(ài).圖中折線(ABCDx軸)反映了某種規(guī)格土樓模型的單價(jià)y(元)與購(gòu)買數(shù)量x(個(gè))之間的函數(shù)關(guān)系.

(1)求當(dāng)10≤x≤20時(shí),yx的函數(shù)關(guān)系式;

(2)已知某旅游團(tuán)購(gòu)買該種規(guī)格的土樓模型總金額為2625元,問(wèn)該旅游團(tuán)共購(gòu)買這種土樓模型多少個(gè)?(總金額=數(shù)量×單價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×qp,q是正整數(shù),且pq,在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解,并規(guī)定:Fn=,例如12可以分解成1×12,2×6或3×4,因?yàn)?2-16-24-3,所有3×4是最佳分解,所以F12=.

1如果一個(gè)正整數(shù)a是另外一個(gè)正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對(duì)任意一個(gè)完全平方數(shù)m,總有Fm=1.

2如果一個(gè)兩位正整數(shù)t,t=10x+y1xy9,x,y為自然數(shù),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為18,那么我們稱這個(gè)數(shù)t為吉祥數(shù),求所有吉祥數(shù)中Ft的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測(cè)得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長(zhǎng)BC是12米,梯坎坡度i=1:,則大樓AB的高度為_________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0t≤15).過(guò)點(diǎn)DDFBC于點(diǎn)F,連接DE,EF

1)求證:AE=DF;

2)四邊形AEFD能夠成為菱形嗎?如果能,求出t的值,如果不能,說(shuō)明理由;

3)在運(yùn)動(dòng)過(guò)程中,四邊形BEDF能否為正方形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】順次連接一個(gè)四邊形的各邊中點(diǎn),得到了一個(gè)矩形,則下列四邊形中滿足條件的是( 。

①平行四邊形;②菱形;③矩形;④對(duì)角線互相垂直的四邊形.

A. ①③B. ②③C. ③④D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷售A型和B型兩種型號(hào)的電腦,銷售一臺(tái)A型電腦可獲利120元,銷售一臺(tái)B型電腦可獲利140元.該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的3倍.設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.

(1)求yx的關(guān)系式;

(2)該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售利潤(rùn)最大?

(3)若限定商店最多購(gòu)進(jìn)A型電腦60臺(tái),則這100臺(tái)電腦的銷售總利潤(rùn)能否為13600元?若能,請(qǐng)求出此時(shí)該商店購(gòu)進(jìn)A型電腦的臺(tái)數(shù);若不能,請(qǐng)求出這100臺(tái)電腦銷售總利潤(rùn)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小亮步行上山游玩,設(shè)小亮出發(fā)x min加后行走的路程為y m.圖中的折線表示小亮在整個(gè)行走過(guò)程中yx的函數(shù)關(guān)系,

1)小亮行走的總路程是____________m,他途中休息了____________min.

2)當(dāng)5080時(shí),求yx的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案