【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動,同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出t的值,如果不能,說明理由;
(3)在運(yùn)動過程中,四邊形BEDF能否為正方形?若能,求出t的值;若不能,請說明理由.
【答案】(1)證明見解析;(2)當(dāng)t=10時(shí),四邊形AEFD是菱形;(3)四邊形BEDF不能為正方形,理由見解析.
【解析】
(1)由已知條件可得RT△CDF中∠C=30°,即可知DF= CD=AE=2t;
(2)由(1)知DF∥AE且DF=AE,即四邊形ADFE是平行四邊形,若構(gòu)成菱形,則鄰邊相等即AD=AE,可得關(guān)于t的方程,求解即可知;
(3)四邊形BEDF不為正方形,若該四邊形是正方形即∠EDF=90°,即DE∥AB,此時(shí)AD=2AE=4t,根據(jù)AD+CD=AC求得t的值,繼而可得DF≠BF,可得答案.
(1)∵Rt△ABC中,∠B=90°,∠A=60°,
∴∠C=90°∠A=30°.
又∵在Rt△CDF中,∠C=30°,CD=4t
∴DF=CD=2t,
∴DF=AE;
(2)∵DF∥AB,DF=AE,
∴四邊形AEFD是平行四邊形,
當(dāng)AD=AE時(shí),四邊形AEFD是菱形,
即604t=2t,解得:t=10,
即當(dāng)t=10時(shí),四邊形AEFD是菱形;
(3)四邊形BEDF不能為正方形,理由如下:
當(dāng)∠EDF=90°時(shí),DE∥BC.
∴∠ADE=∠C=30°
∴AD=2AE
∵CD=4t,
∴DF=2t=AE,
∴AD=4t,
∴4t+4t=60,
∴t= 時(shí),∠EDF=90°
但BF≠DF,
∴四邊形BEDF不可能為正方形。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)C表示數(shù)c,且.我們把數(shù)軸上兩點(diǎn)之間的距離用表示兩點(diǎn)的大寫字母一起標(biāo)記.
比如,點(diǎn)A與點(diǎn)B之間的距離記作AB.
(1)求AC的值;
(2)若數(shù)軸上有一動點(diǎn)D滿足CD+AD=36,直接寫出D點(diǎn)表示的數(shù);
(3)動點(diǎn)B從數(shù)1對應(yīng)的點(diǎn)開始向右運(yùn)動,速度為每秒1個(gè)單位長度,同時(shí)點(diǎn)A,C在數(shù)軸上運(yùn)動,點(diǎn)A、C的速度分別為每秒 3個(gè)單位長度,每秒4個(gè)單位長度,運(yùn)動時(shí)間為t秒.
①若點(diǎn)A向右運(yùn)動,點(diǎn)C向左運(yùn)動,AB=BC,求t的值.
②若點(diǎn)A向左運(yùn)動,點(diǎn)C向右運(yùn)動,2AB-m×BC的值不隨時(shí)間t的變化而改變,請求出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CE=2DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③∠EAG=45°;④AG∥CF;⑤S△ECG:S△AEG=2:5,其中正確結(jié)論的個(gè)數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,以△ABC的邊AB為直徑的⊙O角邊BC于點(diǎn)E,過點(diǎn)E作DE⊥AC交AC于D.
(1)求證:DE是⊙O的切線;
(2)如圖2,若線段AB、DE的延長線交于點(diǎn)F,∠C=75°,CD=2﹣,求⊙O的半徑和EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)已知E,F分別為正方形ABCD的邊BC,CD上的點(diǎn),AF,DE相交于點(diǎn)G,當(dāng)E,F分別為邊BC,CD的中點(diǎn)時(shí),有:①AF=DE;②AF⊥DE成立.
試探究下列問題:
(1)如圖1,若點(diǎn)E不是邊BC的中點(diǎn),F不是邊CD的中點(diǎn),且CE=DF,上述結(jié)論①,②是否仍然成立?(請直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點(diǎn)E,F分別在CB的延長線和DC的延長線上,且CE=DF,此時(shí),上述結(jié)論①,②是否仍然成立?若成立,請寫出證明過程,若不成立,請說明理由;
(3)如圖3,在(2)的基礎(chǔ)上,連接AE和BF,若點(diǎn)M,N,P,Q分別為AE,EF,FD,AD的中點(diǎn),請判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象中所反映的過程是:張強(qiáng)從家跑步去體育場,在那里鍛煉了一陣后,又 去早餐店吃早餐,然后散步走回家,其中 x 表示時(shí)間,y 表示張強(qiáng)離家的距離。根據(jù)圖象提供的信息,以下四個(gè)說法錯誤的是( )
A. 體育場離張強(qiáng)家2.5千米 B. 張強(qiáng)在體育場鍛煉了15分鐘
C. 體育場離早餐店4千米 D. 張強(qiáng)從早餐店回家的平均速度是3千米/小時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝建軍90周年,某校計(jì)劃在五月份舉行“唱響軍歌”歌詠比賽,要確定一首喜歡人數(shù)最多的歌曲為每班必唱歌曲.為此提供代號為A,B,C,D四首備選曲目讓學(xué)生選擇,經(jīng)過抽樣調(diào)查,并將采集的數(shù)據(jù)繪制如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖①,圖②所提供的信息,
解答下列問題:
(1)本次抽樣調(diào)查中,選擇曲目代號為A的學(xué)生占抽樣總數(shù)的百分比為 ;
(2)請將圖②補(bǔ)充完整;
(3)若該校共有1260名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果估計(jì)全校共有多少學(xué)生選擇喜歡人數(shù)最多的歌曲?(要有解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,∠BCD=∠D=90,上底AD=3,下底BC=,高CD=4,沿AC把梯形ABCD翻折,點(diǎn)D是恰好落在AB邊上的點(diǎn)E處,求△BCE面積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com