【題目】關于x的方程(k﹣1)x2+2kx+2=0.
(1)求證:無論k為何值,方程總有實數(shù)根.
(2)設x1,x2是方程(k﹣1)x2+2kx+2=0的兩個根,記,S的值能為2嗎?若能,求出此時k的值;若不能,請說明理由.
【答案】(1)見解析;(2) k=2
【解析】試題分析:
(1)①當k=1時,原方程是一元一次方程,其有解;②當時,原方程是一元二次方程,列出“根的判別式的表達式”,并證明其值為非負數(shù)即可可得出原方程一定有實數(shù)根;綜合①②可得結論;
(2)由原方程有兩根可知:“”,根據(jù)“一元二次方程根與系數(shù)的關系”列出“兩根和與兩根積的表達式”代入S=2中得到關于“k”的方程,解方程求出“k”的值即可.
試題解析:
(1)①當k=1時,原方程可化為2x+2=0,解得:x=﹣1,此時該方程有實根;
②當k≠1時,方程是一元二次方程,
∵△=(2k)2﹣4(k﹣1)×2
=4k2﹣8k+8
=4(k﹣1)2+4>0,
∴無論k為何實數(shù),方程總有實數(shù)根;
綜上所述,無論k為何實數(shù),方程總有實數(shù)根.
(2)∵原方程有兩根實數(shù)根,
∴原方程為一元二次方程, .
由根與系數(shù)關系可知, , ,
若S=2,則,即,
將, 代入整理得: ,
解得:k=1(舍)或k=2,
∴S的值能為2,此時k=2.
科目:初中數(shù)學 來源: 題型:
【題目】若規(guī)定兩數(shù)a、b通過“※”運算,得到4ab,即a※b=4ab,例如2※6=4×2×6=48
(1)求3※5的值;
(2)求x※x+2※x-2※4=0中x的值;
(3)若無論x是什么數(shù),總有a※x=x,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程x2+2x+2m=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若x1,x2是一元二次方程x2+2x+2m=0的兩個根,且x12+x22=8,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是由7個形狀、大小完全相同的正六邊形組成的網(wǎng)格,正六邊形的頂點稱為格點.已知每個正六邊形的邊長為1,△ABC的頂點都在格點上,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每度生活用電的電費為0.53元,某用戶5月份所交電費y(元)與這個月用電量x(度)之間的關系式為___________,若通過查電表知道x=80度,那么該用戶應付電費____元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在三角形中,一個內(nèi)角的______與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線.三角形的三條角平分線________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com