【題目】已知:y-2x3成正比例,且x=4時(shí)y=8.

(1)yx之間的函數(shù)關(guān)系式;

(2)當(dāng)y=-6時(shí),求x的值.

【答案】1y=6x-16;(2x=.

【解析】

1)根據(jù)y-2x3成正比例設(shè)yx之間的函數(shù)關(guān)系式為y-2=k(x-3),把x=4時(shí)y=8代入可求出k的值,整理即可得答案;(2)把y=-6代入(1)中所求得關(guān)系式,求出x的值即可.

1)∵y-2x3成正比例,

∴設(shè)y-2=k(x3)成正比例,

x=4時(shí)y=8,

k(4-3)=8-2

解得:k=6,

y-2=6(x-3)

整理得:y=6x-16,

yx之間的函數(shù)關(guān)系式為y=6x-16.

2)由(1)知yx之間的函數(shù)關(guān)系式為y=6x-16.

∴當(dāng)y=-6時(shí),6x-16=-6

解得:x=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的半徑為,弦,,,則、之間的距離為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)D的中點(diǎn),直角繞點(diǎn)D旋轉(zhuǎn),,分別與邊,交于EF兩點(diǎn),下列結(jié)論:①是等腰直角三角形;②;③;④,其中正確結(jié)論是( ).

A.①②④B.②③④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,已知,,的高,,,直線,動(dòng)點(diǎn)從點(diǎn)開(kāi)始沿射線方向以每秒厘米的速度運(yùn)動(dòng),動(dòng)點(diǎn)也同時(shí)從點(diǎn)開(kāi)始在直線上以每秒厘米的速度向遠(yuǎn)離點(diǎn)的方向運(yùn)動(dòng),連接、,設(shè)運(yùn)動(dòng)時(shí)間為.

1)請(qǐng)直接寫(xiě)出的長(zhǎng)度(用含有的代數(shù)式表示):______,______;

2)當(dāng)為多少時(shí),的面積為?

3)請(qǐng)利用備用圖探究,當(dāng)___________秒時(shí),.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組為了測(cè)量河對(duì)岸l1的兩棵古樹(shù)A、B之間的距離,他們?cè)诤舆@邊沿著與AB平行的直線l2上取C、D兩點(diǎn),測(cè)得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹(shù)A、B之間的距離為_____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,FCD上一點(diǎn),EBF上一點(diǎn),連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=DAE=70°,AE平分∠BAC,則下列結(jié)論中:①ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個(gè)數(shù)有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下關(guān)于x的各個(gè)多項(xiàng)式中,a,b,c,m,n均為常數(shù).

(1)根據(jù)計(jì)算結(jié)果填寫(xiě)下表:

二次項(xiàng)系數(shù)

一次項(xiàng)系數(shù)

常數(shù)項(xiàng)

(2x + l)(x + 2)

2

2

(2x + 1)(3x - 2)

6

-2

(ax + b)( mx + n)

am

bn

(2)已知(x+ 3)2(x + mx +n)既不含二次項(xiàng),也不含一次項(xiàng),求m + n的值.

(3) 多項(xiàng)式M與多項(xiàng)式x2-3x + 1的乘積為2x4+ ax3 + bx2+ cx -3,2 a +b + c的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC 中,AB=7,AC=9,BC=8cm,BP、CP 分別是ABC ACB 的平分線,且 PDABPEAC,PDE 的周長(zhǎng)是_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=BC,AC=8,tanA=k,PAC邊上一動(dòng)點(diǎn),設(shè)PC=x,作PEABBCEPFBCABF

1)證明:PCE是等腰三角形;

2EM、FN、BH分別是PEC、AFP、ABC的高,用含xk的代數(shù)式表示EMFN,并探究EM、FNBH之間的數(shù)量關(guān)系;

3)當(dāng)k=4時(shí),求四邊形PEBF的面積Sx的函數(shù)關(guān)系式.x為何值時(shí),S有最大值?并求出S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案