【題目】已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,DE⊥AC于E.
(1)求證:DE為⊙O的切線;
(2)G是ED上一點,連接BE交圓于F,連接AF并延長交ED于G.若GE=2,AF=3,求EF的長.
【答案】(1)見解析;(2)∠EAF的度數(shù)為30°
【解析】
(1)連接OD,如圖,先證明OD∥AC,再利用DE⊥AC得到OD⊥DE,然后根據(jù)切線的判定定理得到結論;
(2)利用圓周角定理得到∠AFB=90°,再證明Rt△GEF∽△Rt△GAE,利用相似比得到 于是可求出GF=1,然后在Rt△AEG中利用正弦定義求出∠EAF的度數(shù)即可.
(1)證明:連接OD,如圖,
∵OB=OD,
∴∠OBD=∠ODB,
∵AB=AC,
∴∠ABC=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE為⊙O的切線;
(2)解:∵AB為直徑,
∴∠AFB=90°,
∵∠EGF=∠AGF,
∴Rt△GEF∽△Rt△GAE,
∴,即
整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),
在Rt△AEG中,sin∠EAG
∴∠EAG=30°,
即∠EAF的度數(shù)為30°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某中學在教學樓前新建了一座雕塑.為了測量雕塑的高度,小明在二樓找到一點,利用三角尺測得雕塑頂端點的仰角為,底部點的俯角為,小華在五樓找到一點,利用三角尺測得點的俯角為.若為,則雕塑的高度為________.(結果精確到,參考數(shù)據(jù):).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,設點P到原點O的距離為ρ,OP與x軸正方向的夾角為α,則用[ρ,α]表示點P的極坐標,例如:點P的坐標為(1,1),則其極坐標為[,45°].若點Q的極坐標為[4,120°],則點Q的坐標為( )
A. (-2,2) B. (2,-2) C. (-2,-2) D. (-4,-4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于A,B兩點,頂點C的縱坐標為﹣2,現(xiàn)將拋物線向右平移2個單位,得到拋物線y=a1x2+b1x+c1,則下列結論:①b>0;②a﹣b+c<0;③陰影部分的面積為4;④若c=﹣1,則b2=4a.其中正確的個數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點三角形(頂點是網(wǎng)格線交點的三角形)的頂點的坐標分別是.
(1)請在圖中的網(wǎng)格平面內建立平面直角坐標系;
(2)請畫出關于軸對稱的;
(3)請在軸上求作一點,使的周長最小,并寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知A(1,1)、B(3,5),要在坐標軸上找一點,使得△PAB的周長最小,則點的坐標為( )
A.B.C.或D.或
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=4 cm,AC=2 cm.
(1)在AB上取一點D,當AD=_________cm時,△ACD∽△ABC.
(2)在AC的延長線上取一點E,當CE=________cm時,△AEB∽△ABC此時BE與DC有怎樣的位置關系?________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】天津市奧林匹克中心體育場—“水滴”位于天津市西南部的奧林匹克中心內,某校九年級學生由距“水滴”10千米的學校出發(fā)前往參觀,一部分同學騎自行車先走,過了20分鐘后,其余同學乘汽車出發(fā),結果他們同時到達.已知汽車的速度是騎車同學速度的2倍,求騎車同學的速度.
(1)設騎車同學的速度為x千米/時,利用速度、時間、路程之間的關系填寫下表.(要求:填上適當?shù)拇鷶?shù)式,完成表格)
速度(千米/時) | 所用時間(時) | 所走的路程(千米) | |
騎自行車 | x | 10 | |
乘汽車 | 10 |
(2)列出方程(組),并求出問題的解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com