【題目】已知:,是圓的兩條直徑,連接,

如圖①,求證:,;

如圖②,過點(diǎn)于點(diǎn),交圓于點(diǎn),在上取一點(diǎn),使,

求證:四邊形是平行四邊形.

【答案】(1)證明見解析;(2)證明見解析;

【解析】

(1)由同弧所對的圓周角相等得出∠P=A,由OA=OQ得出∠A=Q,那么∠P=Q,AQPB.根據(jù)∠AOQ=BOP,得到,那么AQ=BP;
(2)先由垂徑定理得出BD=CD,又PD=DK,得出四邊形BKCP為菱形,根據(jù)菱形的性質(zhì)得出PBCK,再證明CKAQ,且CK=AQ,那么四邊形AQKC為平行四邊形.

證明:

,

,

,

,

;

,

,

又∵,

互相垂直且平分,

∴四邊形為菱形;

,且,

,

,

,且,

∴四邊形為平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在O中,弦AB與弦CD相交于點(diǎn)G,OACD于點(diǎn)E,過點(diǎn)B的直線與CD的延長線交于點(diǎn)F,ACBF.

(1)若FGB=FBG,求證:BF是O的切線;

(2)若tanF=,CD=a,請用a表示O的半徑;

(3)求證:GF2﹣GB2=DFGF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

港珠澳大橋是中國中央政府支持香港、澳門和珠三角地區(qū)城市快速發(fā)展的一項(xiàng)重大舉措,港珠澳大橋東起香港國際機(jī)場附近的香港口岸人工島,向西橫跨伶仃洋海域后連接珠海和澳門,止于珠海洪灣,總長 55 千米,是粵港澳三地首次合作共建的超大型跨海交通工程.某天,甲乙兩輛巴士均從香港口岸人工島出發(fā)沿港珠澳大橋開往珠海洪灣,甲巴士平均每小時(shí)比乙巴士多行駛 10 千米,其行駛時(shí)間是乙巴士行駛時(shí)間的.求乘坐甲巴士從香港口岸人工島出發(fā)到珠海洪灣需要多長時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,△ABC的周長為38cm,∠BAC=140°AB+AC=22cm,AB、AC的垂直平分線分別交BCE、F,與AB、AC分別交于點(diǎn)D、G.

(1)求∠EAF的度數(shù).

(2)求△AEF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為半圓直徑,、為圓周上兩點(diǎn),且,交于點(diǎn),則圖中與相等的角有(

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖2211拋物線yax2+2axc(a>0)y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線的解析式;

(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;

(3)拋物線線上是否存在一點(diǎn)P,使,若存在,請求出點(diǎn)的坐標(biāo);若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明準(zhǔn)備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),做成要制作的飛機(jī)的一個(gè)機(jī)翼,請你根據(jù)圖中的數(shù)據(jù)幫小明計(jì)算出CD的長度.(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(-1,0),B4,0C0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)Px軸的垂線交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M

1)求該拋物線所表示的二次函數(shù)的表達(dá)式;

2)已知點(diǎn)F0,),當(dāng)點(diǎn)Px軸上運(yùn)動(dòng)時(shí),試求m為何值時(shí),四邊形DMQF是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩張完全相同的矩形紙片、按如圖方式放置,為重合的對角線.重疊部分為四邊形,

試判斷四邊形為何種特殊的四邊形,并說明理由;

,,求四邊形的面積.

查看答案和解析>>

同步練習(xí)冊答案