【題目】列方程解應用題:

港珠澳大橋是中國中央政府支持香港、澳門和珠三角地區(qū)城市快速發(fā)展的一項重大舉措,港珠澳大橋東起香港國際機場附近的香港口岸人工島,向西橫跨伶仃洋海域后連接珠海和澳門,止于珠海洪灣,總長 55 千米,是粵港澳三地首次合作共建的超大型跨海交通工程.某天,甲乙兩輛巴士均從香港口岸人工島出發(fā)沿港珠澳大橋開往珠海洪灣,甲巴士平均每小時比乙巴士多行駛 10 千米,其行駛時間是乙巴士行駛時間的.求乘坐甲巴士從香港口岸人工島出發(fā)到珠海洪灣需要多長時間.

【答案】甲巴士從香港口岸人工島出發(fā)到珠海洪灣需要小時.

【解析】

設甲巴士從香港口岸人工島出發(fā)到珠海洪灣的行駛時間需要小時,利用甲巴士平均每小時比乙巴士多行駛 10 千米,列出分式方程即可求得答案.

解:設甲巴士從香港口岸人工島出發(fā)到珠海洪灣的行駛時間需要小時,

則乙巴士的行駛時間需要小時,

根據題意得:

解得:

經檢驗,是原分式方程的解且符合題意

答:甲巴士從香港口岸人工島出發(fā)到珠海洪灣需要小時.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E,連接BD。

(1)求證:DE是⊙O的切線;

(2)若tan∠ABD=2,CE=1,求⊙O的半徑。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2-(m+3)x+9的頂點Cx軸正半軸上,一次函數(shù)y=x+3與拋物線交于AB兩點,與x、y軸分別交于DE兩點.

(1)m的值;

(2)A、B兩點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國北京已獲得2022年第24屆冬季奧林匹克運動會舉辦權,北京也將創(chuàng)造歷史,成為第一個既舉辦過夏奧會又舉辦冬奧會的城市.張家口也成為本屆冬奧會的協(xié)辦城市,為此,中國設計了第一條采用我國自主研發(fā)的北斗衛(wèi)星導航系統(tǒng)的智能化高速鐵路——京張高鐵,作為2022年北京冬奧會重要交通保障設施.已知北京至張家口鐵路,鐵路全長約180千米.按照設計,京張高鐵列車的平均行駛速度是普通快車的1.5倍,用時比普通快車用時少了20分鐘,求高鐵列車的平均行駛速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在每個小正方形的邊長為的網格圖形中,每個小正方形的頂點稱為格點.從一個格點移動到與之相距的另一個格點的運動稱為一次跳馬變換.例如,在的正方形網格圖形中(如圖1),從點A經過一次跳馬變換可以到達點B,C,D,E等處.現(xiàn)有的正方形網格圖形(如圖2),則從該正方形的頂點M經過跳馬變換到達與其相對的N,最少需要跳馬變換的次數(shù)是_______,現(xiàn)有的正方形網格圖形(如圖3),則從該正方形的頂點經過跳馬變換到達與其相對的,最少需要跳馬變換的次數(shù)是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:DAC延長線上一點,且,M是線段CD上一個動點,連接BM,延長MBH,使得以點B為中心,將線段BH逆時針旋轉得到線段BQ,連接AQ

1)依題意補全圖形;

2)求證:

3)點N是射線AC上一點,且點N是點M關于點D的對稱點,連接BN,如果 求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y=的圖象經過點A(2,﹣3).

(1)求k的值;

(2)函數(shù)的圖象在哪幾個象限?yx的增大怎樣變化?

(3)畫出函數(shù)的圖象

(4)點B(,﹣12),C(﹣2,4)在這個函數(shù)的圖象上嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:,是圓的兩條直徑,連接,

如圖①,求證:,

如圖②,過點于點,交圓于點,在上取一點,使,

求證:四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】仙降是瑞安重要的制鞋基地,其生產的鞋子暢銷世界各地,某制鞋企業(yè)欲將件產品運往三地銷售,運往地的費用為18/件,運往地的費用為20/件,運往地的費用為17/件,要求運往地的件數(shù)與運往地的件數(shù)相同. 設安排件產品運往地.

1)若①運往地件數(shù)為 件(用含的代數(shù)式表示);②若總運費不超過1850元,則運往地至少有多少件?

2)若總運費為1900元,則的最大值為 .(直接寫出答案)

查看答案和解析>>

同步練習冊答案