【題目】如圖,現(xiàn)有一個(gè)轉(zhuǎn)盤被平均分成6等份,分別標(biāo)有數(shù)字2、3、4、5、6、7這六個(gè)數(shù)字,轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止時(shí),指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字,求:
(1)轉(zhuǎn)到數(shù)字10是______(從“不確定事件”“必然事件”“不可能事件”選一個(gè)填入);
(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)出的數(shù)字大于3的概率是______;
(3)現(xiàn)有兩張分別寫有3和4的卡片,要隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后記下轉(zhuǎn)出的數(shù)字,與兩張卡片上的數(shù)字分別作為三條線段的長度.
①這三條線段能構(gòu)成三角形的概率是多少?
②這三條線段能構(gòu)成等腰三角形的概率是多少?
【答案】(1)不可能事件;
【解析】
根據(jù)確定性事件和不確定性事件的概念判斷可得;
轉(zhuǎn)盤被平均分成6等份,轉(zhuǎn)到每個(gè)數(shù)字的可能性相等,共有6種可能結(jié)果,大于3的結(jié)果有4種,由概率公式可得;
轉(zhuǎn)盤被平均分成6等份,轉(zhuǎn)到每個(gè)數(shù)字的可能性相等,共有6種可能結(jié)果,能夠成三角形的結(jié)果有5種,由概率公式可得;
轉(zhuǎn)盤被平均分成6等份,轉(zhuǎn)到每個(gè)數(shù)字的可能性相等,共有6種可能結(jié)果,能夠成等腰三角形的結(jié)果有2種,由概率公式可得.
解:(1)轉(zhuǎn)到數(shù)字10是不可能事件,
故答案為:不可能事件;
(2)轉(zhuǎn)盤被平均分成6等份,轉(zhuǎn)到每個(gè)數(shù)字的可能性相等,共有6種可能結(jié)果,大于3的結(jié)果有4種,
∴轉(zhuǎn)出的數(shù)字大于3的概率是,
故答案為:;
(2)①轉(zhuǎn)盤被平均分成6等份,轉(zhuǎn)到每個(gè)數(shù)字的可能性相等,共有6種可能結(jié)果,能夠成三角形的結(jié)果有5種,
∴這三條線段能構(gòu)成三角形的概率是;
②轉(zhuǎn)盤被平均分成6等份,轉(zhuǎn)到每個(gè)數(shù)字的可能性相等,共有6種可能結(jié)果,能夠成等腰三角形的結(jié)果有2種,
∴這三條線段能構(gòu)成等腰三角形的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】詩詞是我國古代文化中的瑰寶,某市教育主管部門為了解本市初中生對(duì)詩詞的學(xué)習(xí)情況,舉辦了一次“中華詩詞”背誦大賽,隨機(jī)抽取了部分同學(xué)的成績(x為整數(shù),總分100分),繪制了如下尚不完整的統(tǒng)計(jì)圖表.
組別 | 成績分組(單位:分) | 頻數(shù) |
A | 50≤x<60 | 40 |
B | 60≤x<70 | a |
C | 70≤x<80 | 90 |
D | 80≤x<90 | b |
E | 90≤x<100 | 100 |
合計(jì) | c |
根據(jù)以上信息解答下列問題:
(1)統(tǒng)計(jì)表中a= ,b= ,c= ;
(2)扇形統(tǒng)計(jì)圖中,m的值為 ,“E”所對(duì)應(yīng)的圓心角的度數(shù)是 (度);
(3)若參加本次大賽的同學(xué)共有4000人,請(qǐng)你估計(jì)成績在80分及以上的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯(cuò)誤的是( )
A. 函數(shù)有最小值
B. 對(duì)稱軸是直線x=
C. 當(dāng)x<,y隨x的增大而減小
D. 當(dāng)﹣1<x<2時(shí),y>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克,且10≤x≤18)之間的函數(shù)關(guān)系如圖所示,該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為多少?列出關(guān)于x的方程是__________________.(不需化簡和解方程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,點(diǎn)E在線段AB上以lcms的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),與此同時(shí)點(diǎn)F在線段BC上由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間均為ts.
(1)若點(diǎn)F的運(yùn)動(dòng)速度與點(diǎn)E的運(yùn)動(dòng)速度相等,當(dāng)t=2時(shí):
①判斷△BEF與△ADE是否全等?并說明理由;
②求∠EDF的度數(shù).
(2)如圖2,將圖1中的“長方形ABCD”改為“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他條件不變.設(shè)點(diǎn)F的運(yùn)動(dòng)速度為xcm/s.是否存在x的值,使得△BEF與△ADE全等?若存在,直接寫出相應(yīng)的x及t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人玩“石頭、剪刀、布”的游戲,他們在不透明的袋子中放入形狀、大小均相同的15張卡片,其中寫有“石頭”、“剪刀”、“布”的卡片張數(shù)分別為3、5、7.兩人各隨機(jī)摸出一張卡片(先摸者不放回)來比勝負(fù),并約定:“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,同種卡片不分勝負(fù)
(1)若甲先摸,則他摸出“石頭”的概率是______;
(2)若甲先摸出“石頭”,則乙再摸出“石頭”的概率是______;
(3)若甲先摸出了“石頭”,則乙獲勝的概率是______;
(4)若甲先摸,則他摸出哪種卡片獲勝的可能性最大?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著新農(nóng)村的建設(shè)和舊城的改造,我們的家園越來越美麗,小明家附近廣場中央新修了一個(gè)圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達(dá)到最高,水柱落地處離池中心米.
(1)請(qǐng)你建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并求出水柱拋物線的函數(shù)解析式;
(2)求出水柱的最大高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠A=90°,AC=AB=4,D,E分別是邊AB,AC的中點(diǎn),若等腰Rt△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到等腰Rt△AD1E1,設(shè)旋轉(zhuǎn)角為α(0<α≤180°),記直線BD1與CE1的交點(diǎn)為P.
(1)如圖1,當(dāng)α=90°時(shí),線段BD1的長等于 ,線段CE1的長等于 ;(直接填寫結(jié)果)
(2)如圖2,當(dāng)α=135°時(shí),求證:BD1=CE1,且BD1⊥CE1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com