【題目】如圖,直線AB交x軸于點(diǎn)B(2,0),交y軸于點(diǎn)A(0,2),直線DM⊥x軸正半軸于點(diǎn)M,交線段AB于點(diǎn)C,DM=3,連接DA,∠DAC=90°.
(1)求直線AB的解析式.
(2)求D點(diǎn)坐標(biāo)及過O、D、B三點(diǎn)的拋物線解析式.
(3)若點(diǎn)P是線段OB上的動點(diǎn),過點(diǎn)P作x軸的垂線交AB于F,交(2)中拋物線于E,連CE,是否存在P使△BPF與△FCE相似?若存在,請求出P點(diǎn)坐標(biāo);若不存在說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過學(xué)習(xí)絕對值,我們知道的幾何意義是數(shù)軸上表示數(shù)在數(shù)軸上的對應(yīng)點(diǎn)與原點(diǎn)的距離,如:表示在數(shù)軸上的對應(yīng)點(diǎn)到原點(diǎn)的距離.,即表示、在數(shù)軸上對應(yīng)的兩點(diǎn)之間的距離,類似的,,即表示、在數(shù)軸上對應(yīng)的兩點(diǎn)之間的距離;一般地,點(diǎn),在數(shù)軸上分別表示數(shù)、,那么,之間的距離可表示為.
請根據(jù)絕對值的幾何意義并結(jié)合數(shù)軸解答下列問題:
(1)數(shù)軸上表示和的兩點(diǎn)之間的距離是___;數(shù)軸上、兩點(diǎn)的距離為,點(diǎn)表示的數(shù)是,則點(diǎn)表示的數(shù)是___.
(2)點(diǎn),,在數(shù)軸上分別表示數(shù)、、,那么到點(diǎn).點(diǎn)的距離之和可表示為_ (用含絕對值的式子表示);若到點(diǎn).點(diǎn)的距離之和有最小值,則的取值范圍是_ __.
(3)的最小值為_ __.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個直角三角形ACB(∠ACB=90°)繞著頂點(diǎn)B順時針旋轉(zhuǎn)60°,使得點(diǎn)C旋轉(zhuǎn)到AB邊上的一點(diǎn)D,點(diǎn)A旋轉(zhuǎn)到點(diǎn)E的位置.F,G分別是BD,BE上的點(diǎn),BF=BG,延長CF與DG交于點(diǎn)H.
(1)求證:CF=DG;
(2)求出∠FHG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,3),且此拋物線的頂點(diǎn)坐標(biāo)為M(-1,4).
(1)求此拋物線的解析式;
(2)設(shè)點(diǎn)D為已知拋物線對稱軸上的任意一點(diǎn),當(dāng)△ACD面積等于6時,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P在線段AM上,當(dāng)PC與y軸垂直時,過點(diǎn)P作軸的垂線,垂足為E,將△PCE沿直線CB翻折,使點(diǎn)P的對應(yīng)點(diǎn)P'與P、E、C處在同一平面內(nèi),請求出P'坐標(biāo),并判斷點(diǎn)P'是否在拋物線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點(diǎn)C,與軸交于點(diǎn)B,與反比例函數(shù)的圖象在第一象限交于點(diǎn)A,連接OA,且.
(1)求ΔBOC的面積.
(2)求點(diǎn)A的坐標(biāo)和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(+10)+(﹣4)
(2)(﹣)+(﹣)+(﹣)+;
(3)5.6+(﹣0.9)+4.4+(﹣8.1)
(4)(﹣81)÷×÷(﹣16)
(5)(﹣5)×49
(6)(﹣125)×[2﹣(﹣2)]﹣300÷6.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、C分別在∠GBE的邊BG、BE上,且AB=AC,AD∥BE,∠GBE的平分線與AD交于點(diǎn)D,連接CD.
求證:①AB=AD;
②CD平分∠ACE.
【答案】詳見解析.
【解析】(1)∵AD∥BE,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD;
(2)∵AD∥BE,
∴∠ADC=∠DCE,
由①知AB=AD,
又∵AB=AC,
∴AC=AD,
∴∠ACD=∠ADC,
∴∠ACD=∠DCE,
∴CD平分∠ACE;
點(diǎn)睛:角平分線問題的輔助線添加及其解題模型.
①垂兩邊:如圖(1),已知平分,過點(diǎn)作, ,則.
②截兩邊:如圖(2),已知平分,點(diǎn) 上,在上截取,則≌.
③角平分線+平行線→等腰三角形:
如圖(3),已知平分, ,則;
如圖(4),已知平分
(1) (2) (3) (4)
④三線合一(利用角平分線+垂線→等腰三角形):
如圖(5),已知平分,且,則, .
(5)
【題型】解答題
【結(jié)束】
26
【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點(diǎn),AD垂直于過C點(diǎn)的切線,垂足為D,AB的延長線交直線CD于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)若AB=4,B為OE的中點(diǎn),CF⊥AB,垂足為點(diǎn)F,求CF的長;
(3)如圖②,連接OD交AC于點(diǎn)G,若,求sinE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,若順次連接四邊形ABCD各邊中點(diǎn)得的四邊形EFGH是矩形,則稱原四邊形ABCD為“中母矩形”即若四邊形的對角線互相垂直,那么這個四邊形稱為“中母矩形”.
(1)如圖2,在直角坐標(biāo)系xOy中,已知A(4,0),B(1,4),C(4,6),請?jiān)诟顸c(diǎn)上標(biāo)出D點(diǎn)的位置(只標(biāo)一點(diǎn)即可),使四邊形ABCD是中母矩形.并寫出點(diǎn)D的坐標(biāo).
(2)如圖3,以△ABC的邊AB,AC為邊,向三角形外作正方形ABDE及ACFG,連接CE,BG相交于點(diǎn)O,試判斷四邊形BEGC是中母矩形?說明理由.
(3)如圖4,在Rt△ABC中,AB=8,BC=6,E是斜邊AC的中點(diǎn),F是直角邊AB的中點(diǎn),P是直角邊BC上一動點(diǎn),試探究:當(dāng)PC=_____時,四邊形BPEF是中母矩形?(直角三角形中,30°角所對的直角邊是斜邊的一半)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)O為數(shù)軸的原點(diǎn),點(diǎn)A、B在數(shù)軸上的位置如圖所示,點(diǎn)A表示的數(shù)為5,線段AB的長為線段OA長的1.2倍.點(diǎn)C在數(shù)軸上,M為線段OC的中點(diǎn)
(1)點(diǎn)B表示的數(shù)為____________
(2)若線段BM的長為4.5,則線段AC的長為___________
(3)若線段AC的長為x,求線段BM的長(用含x的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com