【題目】體育課上,某中學對七年級男生進行跳繩測試,以130/分鐘為準,超過的次數(shù)記為正數(shù),不足的次數(shù)記為負數(shù).其中8名男生的成績分別為0

1)這8名男生達到標準的百分率是多少?

2)他們共跳了多少個?

【答案】162.5%;(2)他們共跳了1043

【解析】

1)用達標的人數(shù)除以總數(shù)就是達標的百分數(shù),從而求出答案.
2)根據(jù)正數(shù)和負數(shù)的意義,正數(shù)為超過的次數(shù),負數(shù)為不足的次數(shù),分別把他們跳的數(shù)加起來,即可得出答案.

解:(1)根據(jù)題意得:5÷8×100%=62.5%;
答:這8名男生達到標準的百分率是62.5%
2)他們跳的總個數(shù)是:
(13010)(13012)(13030)130(13020)(13015)(13010)130=1043(個).

答:他們共跳了1043

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BAC 的角平分線與 BC 的垂直平分線交于點 D,DEAB, DFAC,垂足分別為 E,F(xiàn). AB=10,AC=8, BE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,四邊形OABC是長方形,O為原點,點Ax軸上,點Cy軸上且A(10,0),C(0,6),點DAB邊上,將△CBD沿CD翻折,點B恰好落在OA邊上點E處.

(1)求點E的坐標;

(2)求折痕CD所在直線的函數(shù)表達式;

(3)請你延長直線CDx軸于點F. ①求△COF的面積;

②在x軸上是否存在點P,使SOCP=SCOF?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖∠DAC=40°,∠B=50°,

1)求的度數(shù).

2(直接填寫平行或不一定平行,不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A4、0)、B3,4),C02).

1)求;(求四邊形ABCO的面積)

2)在x軸上是否存在一點,使,(三角形APB的面積),若存在,請直接寫出點P坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:對任意一個兩位數(shù),如果滿足個位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個兩位數(shù)為“迥異數(shù)”,將一個迥異數(shù)的個位數(shù)字與十位數(shù)字對調后得到一個新的兩位數(shù),把這個新兩位數(shù)與原兩位數(shù)的和與11的商記為.例如:,對調個位數(shù)字與十位數(shù)字得到新兩位數(shù)21,新兩位數(shù)與原兩位數(shù)的和為21+12=33,和與11的商為33÷11=3,所以.根據(jù)以上定義,回答下列問題:

1)填空:①下列兩位數(shù):4042,44中,“迥異數(shù)”為_______;②計算:=_______;

2)如果一個“迥異數(shù)”的十位數(shù)字是,個位數(shù)字是,且,請求出“迥異數(shù)”

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,ABC的頂點均在格點上,C的坐標為4,-1).

1請以y軸為對稱軸畫出與△ABC對稱的△A1B1C1,并直接寫出點A1、B1、C1的坐標;

2ABC的面積是

3Pa+1,b-1與點C關于x軸對稱,a= b=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖:點(1,3)在函數(shù)y=(x>0)的圖象上,矩形ABCD的邊BCx軸上,E是對角線BD的中點,函數(shù)y=(x>0)的圖象又經(jīng)過A、E兩點,點E的橫坐標為m,解答下列問題:

(1)k的值;

(2)求點A的坐標;(用含m代數(shù)式表示)

(3)當∠ABD=45°時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某造紙企業(yè)為了更好地處理污水問題,決定購買10臺新型污水處理設備.甲、乙兩種型號的設備可選,其中每臺的價格,月處理污水量如表:

A

B

價格(萬元/

10

8

處理污水量(噸/月)

180

150

1)經(jīng)預算:該企業(yè)購買污水處理設備的資金不超過85萬元,你認為該企業(yè)有哪幾種購買方案.

2)在(1)的條件下,若每月需要處理的污水不低于1530噸,為了節(jié)約資金,請你為該企業(yè)設計一種最省錢的購買方案.

查看答案和解析>>

同步練習冊答案