【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的兩點,與軸交于點,與軸交于點,點的坐標(biāo)是,連接,且.
(1)求這個反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象,直接寫出不等式的解集.
【答案】(1)反比例函數(shù)的解析式為:,一次函數(shù)解析式為:;(2)x<-4或0<x<3.
【解析】
(1)過點A作AE⊥x軸于點E,根據(jù)三角函數(shù)的定義,得AE=3,進而得OE=4,即可得到反比例函數(shù)解析式,進而得到點B的坐標(biāo),根據(jù)待定系數(shù)法,即可得到一次函數(shù)解析式;
(2)由,得:,結(jié)合函數(shù)圖象,即可得到答案.
(1)過點A作AE⊥x軸于點E,
∵,
∴AE=,
∴OE=,
∴A(-4,3),
把(-4,3)代入,得:m=-12,
∴反比例函數(shù)的解析式為:,
把代入,得n=3,
∴B(3,-4),
把A(-4,3),B(3,-4)代入,得:,解得:,
∴一次函數(shù)解析式為:;
(2)由,得:,
∴一次函數(shù)圖象在反比例函數(shù)圖象上方部分所對應(yīng)的x的范圍就是不等式的解集,
即:x<-4或0<x<3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,P,B,C是⊙O上的四個點,∠DAP=∠PBA.
(1)求證:AD是⊙O的切線;
(2)若∠APC=∠BPC=60°,試探究線段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在第(2)問的條件下,若AD=2,PD=1,求線段AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC的紙片中,∠C=90°,AC=5,AB=13.點D在邊BC上,以AD為折痕將△ADB折疊得到△ADB′,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,中線BE、CF相交于點G,連接EF,下列結(jié)論:
①=; ②=; ③=; ④=.其中正確的個數(shù)有( )
A. 1個 B. C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如圖1擺放,點D為AB邊的中點,DE交AC于點P,DF經(jīng)過點C,且BC=2.
(1)求證:△ADC∽△APD;
(2)求△APD的面積;
(3)如圖2,將△DEF繞點D順時針方向旋轉(zhuǎn)角α(0°<α<60°),此時的等腰直角三角尺記為△DE′F′,DE′交AC于點M,DF′交BC于點N,試判斷的值是否隨著α的變化而變化?如果不變,請求出的值;反之,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平直角坐標(biāo)系中,O為坐標(biāo)原點,拋物線y=x2﹣mx﹣1的對稱軸為直線x=1.若關(guān)于x的一元二次方程x2﹣mx﹣1﹣n=0(n為實數(shù))在0<x<3的范圍內(nèi)有解,則n的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,O為坐標(biāo)原點,對于任意兩點P(m,y)Q(m,y0),m為任意實數(shù).若y0=,則稱點Q是點P的變換點.例如:若點P(1,y)在直線y=x上,點P的變換點Q在函數(shù)y=的圖象上設(shè)點P(m,y)在函數(shù)y=﹣x2+2x+3的圖象上,點P的變換點Q所在的圖象記為G.
(1)求圖象G對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)圖象G與x軸的交點為A、B(點A在點B的左側(cè))與y軸交于點C,連結(jié)AC、BC,求△ABC的面積;
(3)當(dāng)﹣2≤x≤m時,若圖象G的最高點與最低點之間的距離不大于,直接寫出m的取值范圍;
(4)設(shè)點P(,y)在函數(shù)y=ax2﹣3ax﹣4a(a≠0)的圖象上,點P的變換點Q所在的圖象記為G1,圖象G1與x軸的交點為M、N(點M在點N的左側(cè)),連結(jié)MN,將MN沿y軸向上平移一個單位得到線段M'N',當(dāng)圖象G1與線段M'N'只有一個交點時,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了響應(yīng)國家陽光體育活動,選派部分學(xué)生參加足球、乒乓球、籃球、排球隊集訓(xùn).根據(jù)參加項目制成如下兩幅不完整的統(tǒng)計圖(如圖1和如圖2,要求每位同學(xué)只能選擇一種自己喜歡的球類,圖中用足球、乒乓球、籃球、排球代表喜歡這四種球類某種球類的學(xué)生人數(shù))
請你根據(jù)圖中提供的信息解答下烈問題;
(1)參加籃球隊的有 人,喜歡排球小組的人數(shù)在扇形統(tǒng)計圖中的圓心角的度數(shù)是 ;
(2)補全頻數(shù)分布折線統(tǒng)計圖;
(3)若足球隊只剩一個集訓(xùn)名額,學(xué)生小明和小虎都想?yún)⒓幼闱蜿牐瑳Q定采用隨機摸球的方式確定參加權(quán),具體規(guī)則如下:一個不適明的袋子中裝著標(biāo)有數(shù)字1、2、3、4的四個完全相同的小球,小明隨機地從四個小球中摸出一球,然后放回,小虎再隨機地摸出一球,若小明摸出的小球標(biāo)有數(shù)字比小虎摸出的小球標(biāo)有的數(shù)字大,則小明參加,否則小虎參加,試分析這種規(guī)則對雙方是否公平?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com