【題目】在平面直角坐標(biāo)系中,△ABC各頂點(diǎn)的坐標(biāo)分別為A(2,2),B(4,1),C(4,4).(正方形網(wǎng)格中每個(gè)小正方形的邊長是 1個(gè)單位長度).

(1)畫出將△ABC繞點(diǎn)O 順時(shí)針旋轉(zhuǎn)90度得到的△A1B1C1

(2)寫出A1、B1C1的坐標(biāo);

(3)求出線段AC在旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留).

【答案】(1)如圖見解析;(2)A1(2,-2)1(1,-4),C1(4,-4);(3)6π.

【解析】

(1)根據(jù)旋轉(zhuǎn)的性質(zhì)分別找到點(diǎn)A、B、C繞點(diǎn)O旋轉(zhuǎn)90度的對應(yīng)點(diǎn),然后次連接即可得;

(2)根據(jù)點(diǎn)的坐標(biāo)系中的位置寫出坐標(biāo)即可;

(3)分別求出OA、OC的長,然后根據(jù)扇形面積公式進(jìn)行計(jì)算即可.

(1)如圖所示,A1B1C1即為所示作的;

(2)如圖可知:A1(2,-2,),B1(1,-4),C1(4,-4,);

(3)OA=,OC=

所以線段AC在旋轉(zhuǎn)過程中掃過的面積為:=6π.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知B點(diǎn)的坐標(biāo)為B(8,0).

(1)求拋物線的解析式及其對稱軸方程;

(2)連接AC、BC,試判斷△AOC與△COB是否相似?并說明理由;

(3)M為拋物線上BC之間的一點(diǎn),N為線段BC上的一點(diǎn),若MN∥y軸,求MN的最大值;

(4)在拋物線的對稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 的頂點(diǎn) 、 都在坐標(biāo)軸上,點(diǎn) 的坐標(biāo)為 邊的中點(diǎn).

(1)求出點(diǎn) 的坐標(biāo)和 的周長;(直接寫出結(jié)果)

(2)若點(diǎn) 是矩形 的對稱軸 上的一點(diǎn),使以 、為頂點(diǎn)的四邊形是平行四邊形,求出符合條件的點(diǎn) 的坐標(biāo);

(3)若 邊上一個(gè)動(dòng)點(diǎn),它以每秒 個(gè)單位長度的速度從 點(diǎn)出發(fā),沿 方向向點(diǎn) 勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為 秒.是否存在某一時(shí)刻,使以 、、 為頂點(diǎn)的三角形與 相似或全等? 若存在,求出此時(shí) 的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖1,點(diǎn)C在線段AB上,若滿足AC2=BCAB,則稱點(diǎn)C為線段AB的黃金分割點(diǎn).

如圖2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABCAC于點(diǎn)D

1)求證:點(diǎn)D是線段AC的黃金分割點(diǎn);

2)求出線段AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,陽光通過窗口照到教室內(nèi),豎直窗框在地面上留下2.1 m長的影子如圖所示,已知窗框的影子DE的點(diǎn)E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)P是邊長為5的正方形ABCD內(nèi)一點(diǎn),且PB=3,BFBPB,若在射線BF上找一點(diǎn)M,使以點(diǎn)B,M,C為頂點(diǎn)的三角形與ABP相似,BM的值為( )

A. 3 B. C. 3 D. 35

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具商店對文具進(jìn)行組合銷售,甲種組合:2支紅色圓珠筆,4支黑色圓珠筆;乙種組合:3支紅色圓珠筆,8支黑色圓珠筆,1個(gè)筆記本;丙種組合:2支紅色圓珠筆,6支黑色圓珠筆,1個(gè)筆記本.已知紅色圓珠筆每支2元,黑色圓珠筆每支1.5元,筆記本每個(gè)10元.某個(gè)周末銷售這三種組合文具共485元,其中紅色圓珠筆的銷售額為116元,則筆記本的銷售額為________元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A、B兩點(diǎn)的坐標(biāo)分別為 0,3),(2,0),以線段AB為直角邊,在第一象限內(nèi)作等腰直角三角形ABC,使∠BAC90°,如果在第二象限內(nèi)有一點(diǎn)Pa),且△ABP和△ABC的面積相等,則a_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AGBC于點(diǎn)G,AFDE于點(diǎn)F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

同步練習(xí)冊答案