【題目】如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以OA的長為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=,BC=2,求⊙O的半徑.
【答案】(1)直線CE與⊙O相切,理由見解析;(2)⊙O的半徑為
【解析】
(1)首先連接OE,由OE=OA與四邊形ABCD是矩形,易求得∠DEC+∠OEA=90°,即OE⊥EC,即可證得直線CE與⊙O的位置關(guān)系是相切;
(2)首先易證得△CDE∽△CBA,然后根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得DE的長,又由勾股定理即可求得AC的長,然后設(shè)OA為x,即可得方程,解此方程即可求得⊙O的半徑.
解:(1)直線CE與⊙O相切.…
理由:連接OE,
∵四邊形ABCD是矩形,
∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,
∴∠DCE+∠DEC=90°,∠ACB=∠DAC,
又∠DCE=∠ACB,
∴∠DEC+∠DAC=90°,
∵OE=OA,
∴∠OEA=∠DAC,
∴∠DEC+∠OEA=90°,
∴∠OEC=90°,
∴OE⊥EC,
∵OE為圓O半徑,
∴直線CE與⊙O相切;…
(2)∵∠B=∠D,∠DCE=∠ACB,
∴△CDE∽△CBA,
∴ ,
又CD=AB=,BC=2,
∴DE=1
根據(jù)勾股定理得EC=,
又,…
設(shè)OA為x,則,
解得,
∴⊙O的半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果超市以每千克6元的價(jià)格購進(jìn)了一批水果,經(jīng)測算,此水果超市每天需支出固定費(fèi)用(包括房租,水電費(fèi),員工工資等)為600元.若該種水果的銷售單價(jià)不超過10元,則日銷售量為300千克;若該種水果的銷售單價(jià)超過10元,則每超過1元,日銷售就減少12千克.設(shè)該種水果的銷售單價(jià)為x(x>6,且x為整數(shù))元,日凈收入為y元(日凈收入=日銷售利潤﹣每天固定支出的費(fèi)用).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)此水果超市銷售該種水果的日凈收入能否達(dá)到1560元?否能,請(qǐng)求出此時(shí)的銷售單價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).已知,拋物線的對(duì)稱軸交軸于點(diǎn).
(1)求出的值;
(2)如圖1,連接,點(diǎn)是線段下方拋物線上的動(dòng)點(diǎn),連接.點(diǎn)分別在軸,對(duì)稱軸上,且軸.連接.當(dāng)的面積最大時(shí),請(qǐng)求出點(diǎn)的坐標(biāo)及此時(shí)的最小值;
(3)如圖2,連接,把按照直線對(duì)折,對(duì)折后的三角形記為,把沿著直線的方向平行移動(dòng),移動(dòng)后三角形的記為,連接,,在移動(dòng)過程中,是否存在為等腰三角形的情形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△GMN中,∠M=90°,P為MN的中點(diǎn)
(1)將線段MP繞著點(diǎn)M逆時(shí)針旋轉(zhuǎn)60°得到線段MQ,點(diǎn)P的對(duì)應(yīng)點(diǎn)為Q,若點(diǎn)Q剛好落在GN上,
①在圖1中畫出示意圖;
②試問:以線段MQ為直徑的圓是否與GN相切?請(qǐng)說明理由;
(2)如圖2,用直尺和圓規(guī)在GN邊上求作點(diǎn)Q,使得∠GQM=∠PQN.(保留作圖痕跡,不要求寫作法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A、B、C,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:
(1)在圖中確定該圓弧所在圓的圓心D點(diǎn)的位置,并寫出點(diǎn)D點(diǎn)坐標(biāo)為________.
(2)連接AD、CD,求⊙D的半徑及的長;
(3)有一點(diǎn)E(6,0),判斷點(diǎn)E與⊙D的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小東設(shè)計(jì)的“作圓的一個(gè)內(nèi)接矩形,并使其對(duì)角線的夾角為60°”的尺規(guī)作圖過程
已知:⊙O
求作:矩形ABCD,使得矩形ABCD內(nèi)接于⊙O,且其對(duì)角線AC,BD的夾角為60°.
作法:如圖
①作⊙O的直徑AC;
②以點(diǎn)A為圓心,AO長為半徑畫弧,交直線AC上方的圓弧于點(diǎn)B;
③連接BO并延長交⊙O于點(diǎn)D;
所以四邊形ABCD就是所求作的矩形.
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:∵點(diǎn)A,C都在⊙O上,
∴OA=OC
同理OB=OD
∴四邊形ABCD是平行四邊形
∵AC是⊙O的直徑,
∴∠ABC=90° ( )(填推理的依據(jù))
∴四邊形ABCD是矩形
∵AB= =BO,
∴四邊形ABCD四所求作的矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱軸是直線x=﹣2.關(guān)于下列結(jié)論:①ab<0;②b2﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤ 方程ax2+bx=0的兩個(gè)根為 x1=0,x2=﹣4,其中正確的結(jié)論有( )
A.②③B.②③④C.②③⑤D.②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,點(diǎn)D、點(diǎn)E分別在邊AB、AC上,且DE // BC,BE平分∠ABC.
(1)求證:BD=DE;
(2)若AB=10,AD=4,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一塊長30cm,寬12cm的矩形鐵皮,
(1)如圖1,在鐵皮的四角各切去一個(gè)同樣的正方形,然后將四周突出部分折起,就能制作成一個(gè)底面積為144cm2的無蓋方盒,如果設(shè)切去的正方形的邊長為xcm,則可列方程為 .
(2)由于實(shí)際需要,計(jì)劃制作一個(gè)有蓋的長方體盒子,為了合理使用材料,某學(xué)生設(shè)計(jì)了如圖2的裁剪方案,空白部分為裁剪下來的邊角料,其中左側(cè)兩個(gè)空白部分為正方形,問能否折出底面積為104cm2的有蓋盒子(盒蓋與盒底的大小形狀完全相同)?如果能,請(qǐng)求出盒子的體積;如果不能,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com