【題目】二次函數(shù)yax2+bx+c的圖象如圖所示、則下列結(jié)論:①abc0;②a5b+9c0;③3a+c0,正確的是(  )

A.①③B.①②C.①②③D.②③

【答案】C

【解析】

由拋物線對稱軸的位置判斷ab的符號,由拋物線與y軸的交點(diǎn)判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.

解:①∵拋物線的對稱軸在y軸的左側(cè),

ab0,

由圖象可知:c0

abc0,

故①正確;

x=﹣=﹣1

b2a,

又∵c0,由開口向下得a<0,

a5b+9c9c9a9ca)>0,

故②正確,

b2a,

由圖象可知:9a3b+c0,

9a6a+c0,即3a+c0,

故③正確;

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著技術(shù)的發(fā)展進(jìn)步,某公司2018年采用的新型原料生產(chǎn)產(chǎn)品.這種新型原料的用量y(噸)與月份x之間的關(guān)系如圖1所示,每噸新型原料所生產(chǎn)的產(chǎn)品的售價z(萬元)與月份x之間的關(guān)系如圖2所示.已知將每噸這種新型原料加工成的產(chǎn)品的成本為20萬元.

1)求出該公司這種新型原料的用量y(噸)與月份x之間的函數(shù)關(guān)系式;

2)若該公司利用新型原料所生產(chǎn)的產(chǎn)品當(dāng)月都全部銷售,求哪個月利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)yk1x+b與反比例函數(shù)y的圖象交于第一象限內(nèi)的P,8),Q4,m)兩點(diǎn),與x軸交于A點(diǎn).

1)寫出點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)P′的坐標(biāo);

2)分別求出這兩個函數(shù)的表達(dá)式;

3)求∠P′AO的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,D是半圓O上一點(diǎn),C的中點(diǎn),連結(jié)ACBD于點(diǎn)E,連結(jié)AD,若BE4DE,CE6,則AB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+cx軸交于點(diǎn)A(﹣3,0)和點(diǎn)B,與y軸交于點(diǎn)C 0,2).

1)求拋物線的表達(dá)式,并用配方法求出頂點(diǎn)D的坐標(biāo);

2)若點(diǎn)E是點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn),求tanCEB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在⊙O中,直徑MN10,正方形ABCD的四個頂點(diǎn)分別在⊙O及半徑OMOP上,并且∠POM45°,求正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD 的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2),延長CBx軸于點(diǎn)A1,作正方形A1CC1B1,延長C1B1x軸于點(diǎn)A2,作正方形A2C1C2B2,,按照這樣的規(guī)律作正方形,則點(diǎn)B2019的縱坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】佛山一環(huán)高速化改造后正式收費(fèi),車輛經(jīng)過平勝大橋收費(fèi)站時,設(shè)置了 4 ETC 智能收費(fèi)(即不 需要人工收費(fèi))通道,分別為 A、B、C、D 通道,車輛可隨機(jī)選擇其中的一個直接讀卡通過.

1)一輛車經(jīng)過此收費(fèi)站時,選擇 A 通道通過的概率是___________;

2)現(xiàn)有甲、乙兩輛小車從同一方向通過此收費(fèi)站,請你用樹狀圖或列表格求出兩輛車選擇不同通道通過的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2x軸于A﹣1,0),B40)兩點(diǎn),交y軸于點(diǎn)C,與過點(diǎn)C且平行于x軸的直線交于另一點(diǎn)D,點(diǎn)P是拋物線上一動點(diǎn).

1)求拋物線解析式及點(diǎn)D坐標(biāo);

2)點(diǎn)Ex軸上,若以A,E,D,P為頂點(diǎn)的四邊形是平行四邊形,求此時點(diǎn)P的坐標(biāo);

3)過點(diǎn)P作直線CD的垂線,垂足為Q,若將△CPQ沿CP翻折,點(diǎn)Q的對應(yīng)點(diǎn)為Q′.是否存在點(diǎn)P,使Q′恰好落在x軸上?若存在,求出此時點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案