【題目】(1) 知識(shí)儲(chǔ)備

①如圖 1,已知點(diǎn) P 為等邊△ABC 外接圓的弧BC 上任意一點(diǎn).求證:PB+PC= PA.

②定義:在△ABC 所在平面上存在一點(diǎn) P,使它到三角形三頂點(diǎn)的距離之和最小,則稱點(diǎn) P 為△ABC

的費(fèi)馬點(diǎn),此時(shí) PA+PB+PC 的值為△ABC 的費(fèi)馬距離.

(2)知識(shí)遷移

①我們有如下探尋△ABC (其中∠A,∠B,∠C 均小于 120°)的費(fèi)馬點(diǎn)和費(fèi)馬距離的方法:

如圖 2,在△ABC 的外部以 BC 為邊長(zhǎng)作等邊△BCD 及其外接圓,根據(jù)(1)的結(jié)論,易知線段____的長(zhǎng)度即為△ABC 的費(fèi)馬距離.

②在圖 3 中,用不同于圖 2 的方法作出△ABC 的費(fèi)馬點(diǎn) P(要求尺規(guī)作圖).

(3)知識(shí)應(yīng)用

①判斷題(正確的打√,錯(cuò)誤的打×):

ⅰ.任意三角形的費(fèi)馬點(diǎn)有且只有一個(gè)__________;

ⅱ.任意三角形的費(fèi)馬點(diǎn)一定在三角形的內(nèi)部__________.

②已知正方形 ABCD,P 是正方形內(nèi)部一點(diǎn),且 PA+PB+PC 的最小值為,求正方形 ABCD 的

邊長(zhǎng).

【答案】 AD ×

【解析】分析(1)根據(jù)已知首先能得到△PCE為等邊三角形,進(jìn)而得出△ACE≌△BPC,即可得證;

(2)①仔細(xì)閱讀新知的概念,結(jié)合圖形特點(diǎn),直接有結(jié)論判斷即可;

②根據(jù)尺規(guī)作圖,作等邊三角形即可求得費(fèi)馬點(diǎn);

(3)①ⅰ.根據(jù)作圖可知費(fèi)馬點(diǎn)有且只有一個(gè),ⅱ.由圖1和圖2,可知任意三角形的費(fèi)馬點(diǎn)不一定都在三角形的內(nèi)部;

將△ABP沿點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°到△A1BP1A1A1H⊥BC,交CB的延長(zhǎng)線于H,連接P1P,根據(jù)等邊三角形的判定與性質(zhì)得到△P1PB是正三角形,進(jìn)而得出∠A1BH=30°,然后由正方形的性質(zhì)和30°角直角三角形的性質(zhì),根據(jù)勾股定理求出正方形的邊長(zhǎng).

詳解:(1)①證明PA上取一點(diǎn)E,使PE=PC,連接CE,

∵正三角形ABC

∴∠APC=∠ABC=60°

∵PE=PC,∴△PEC是正三角形

∴CE=CP ∠ACB=∠ECP=60°

∴∠1=∠2

又∵∠3=∠4 BC=AC

∴△ACE≌△BCP (ASA)

∴AE=BP

即:BP+CP=AP.

(2)①線段 AD 的長(zhǎng)度即為△ABC的費(fèi)馬距離.

ABAC分別向外作等邊三角形,連接CD,BE,

交點(diǎn)即為P0

(3)①ⅰ.( √ ) ②ⅱ.( × )

解:將△ABP沿點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°到△A1BP1

A1A1H⊥BC,交CB的延長(zhǎng)線于H,連接P1P,

易得:A1B=AB,PB=P1B,PA=P1 A1,∠P1BP=∠A1BA=60°

∵PB=P1B ∠P1BP=60°

∴△P1PB是正三角形

∴PP1=PB

∵PA+PB+PC的最小值為

∴P1A1+PP1+PC的最小值為

∴A1,P1,P,C在同一直線上,即A1C=

設(shè)正方形的邊長(zhǎng)為2x

∵∠A1BA=60° ∠CBA=90°

∴∠1=30°

Rt△A1HB中,A1B=AB=2x,∠1=30°

得:A1H=x,BH=

Rt△A1HC中,由勾股定理得:

解得:x1=1 x2=1(舍去)

∴正方形ABCD的邊長(zhǎng)為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=﹣xm1+bx3mb為常數(shù))是二次函數(shù),其圖象的對(duì)稱軸為直線x1

I)求該二次函教的解析式;

)當(dāng)﹣2≤x≤0時(shí),求該二次函數(shù)的函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在梯形ABCD中,ABCD,CE平分∠BCDCEADE,DE2AE.若CED面積為1,則四邊形ABCE的面積為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連結(jié)EC.如果AB=AC,BAC=90°

當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖1,請(qǐng)你判斷線段CE、BD之間的位置和數(shù)量關(guān)系(直接寫出結(jié)論);

當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),請(qǐng)你在圖2畫出圖形,判斷中的結(jié)論是否仍然成立,并證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請(qǐng)按下列要求畫圖:

ABC先向右平移4個(gè)單位長(zhǎng)度、再向上平移2個(gè)單位長(zhǎng)度,得到A1B1C1,畫出A1B1C1

②△A2B2C2ABC關(guān)于原點(diǎn)O成中心對(duì)稱,畫出A2B2C2

(2)在(1)中所得的A1B1C1A2B2C2關(guān)于點(diǎn)M成中心對(duì)稱,請(qǐng)直接寫出對(duì)稱中心M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“垃圾分類”越來(lái)越受到人們的關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就“垃圾分類”知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息回答下列問題:

1)接受問卷調(diào)查的學(xué)生共有  人,條形統(tǒng)計(jì)圖中的值為  ;

2)扇形統(tǒng)計(jì)圖中“了解很少”部分所對(duì)應(yīng)扇形的圓心角的度數(shù)為  ;

3)若從對(duì)垃圾分類知識(shí)達(dá)到“非常了解”程度的2名男生和2名女生中隨機(jī)抽取2人參加垃圾分類知識(shí)競(jìng)賽,請(qǐng)用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y2x2的圖象如圖所示,坐標(biāo)原點(diǎn)O,點(diǎn)B1,B2B3y軸的正半軸上,點(diǎn)A1A2,A3在二次函數(shù)y2x2位于第一象限的圖象上,若A1OB1,A2B1B2,A3B2B3都為等腰直角三角形,且點(diǎn)A1,A2,A3均為直角頂點(diǎn),則點(diǎn)A3的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)yaxh2+ka0)的圖象經(jīng)過原點(diǎn),最大值為16,且形狀與拋物線y4x2+2x3相同,則此函數(shù)的關(guān)系式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為活躍聯(lián)歡晚會(huì)的氣氛,組織者設(shè)計(jì)了以下轉(zhuǎn)盤游戲:A、B兩個(gè)帶指針的轉(zhuǎn)盤分別被分成三個(gè)面積相等的扇形,轉(zhuǎn)盤A上的數(shù)字分別是1,6,8,轉(zhuǎn)盤B上的數(shù)字分別是4,5,7(兩個(gè)轉(zhuǎn)盤除表面數(shù)字不同外,其他完全相同).每次選擇2名同學(xué)分別撥動(dòng)A、B兩個(gè)轉(zhuǎn)盤上的指針,使之產(chǎn)生旋轉(zhuǎn),指針停止后所指數(shù)字較大的一方為獲勝者,負(fù)者則表演一個(gè)節(jié)目(若箭頭恰好停留在分界線上,則重轉(zhuǎn)一次).作為游戲者,你會(huì)選擇A、B中哪個(gè)轉(zhuǎn)盤呢?并請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案