【題目】已知一次函數(shù)的圖象經(jīng)過點(diǎn)A(2,4)和B(﹣1,﹣5)兩點(diǎn).
(1)求出該一次函數(shù)的表達(dá)式;
(2)判斷(﹣4,3)是否在這個(gè)函數(shù)的圖象上?
(3)求出該函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo)以及與坐標(biāo)軸圍成的三角形面積.
【答案】(1)y=3x-2;(2)不在;(3)(,0),(0,-2),.
【解析】
(1)利用待定系數(shù)法即可得出結(jié)論;
(2)將x=﹣4代入一次函數(shù)表達(dá)式中求出y和3對比即可得出結(jié)論;
(3)先確定出直線與x,y軸的交點(diǎn),最后用三角形的面積公式即可得出結(jié)論.
(1)設(shè)一次函數(shù)的解析式為y=kx+b.
∵一次函數(shù)的圖象經(jīng)過點(diǎn)A(2,4)和B(﹣1,﹣5)兩點(diǎn),∴,∴,∴一次函數(shù)的表達(dá)式為y=3x﹣2;
(2)由(1)知,一次函數(shù)的表達(dá)式為y=3x﹣2,將x=﹣4代入此函數(shù)表達(dá)式中得:y=3×(﹣4)﹣2=﹣14≠3,∴(﹣4,3)不在這個(gè)函數(shù)的圖象上;
(3)由(1)知,一次函數(shù)的表達(dá)式為y=3x﹣2,令x=0,則y=﹣2,令y=0,則3x﹣2=0,∴x,∴該函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo)為(,0),(0,-2),∴該函數(shù)圖象與坐標(biāo)軸圍成的三角形面積為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,要得到△ABD≌△ACE,從下列條件中補(bǔ)選一個(gè),則錯(cuò)誤的是( )
A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,0),B(0,4),作△BOC,使△BOC與△ABO全等,則點(diǎn)C坐標(biāo)為__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD、A′D′分別是銳角△ABC和△A′B′C′中BC與B′C′邊上的高,且AB=A′B′,AD=A′D′,若使△ABC≌△A′B′C′,請你補(bǔ)充條件________.(只需填寫一個(gè)你認(rèn)為適當(dāng)?shù)臈l件)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB與CD交于點(diǎn)O,OE平分∠AOC,點(diǎn)F為AB上一點(diǎn)(不與點(diǎn)A及O重合),過點(diǎn)F作FG∥OE,交CD于點(diǎn)G,若∠AOD=110°,則∠AFG度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店以40元/千克的進(jìn)價(jià)購進(jìn)一批茶葉,經(jīng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量y(千克)與銷售價(jià)x(元/千克)成一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)若該商店銷售這批茶葉的成本不超過2800元,則它的最低銷售價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程數(shù).“燃油效率”越高表示汽車每消耗1升汽油行駛的里程數(shù)越多;“燃油效率”越低表示汽車每消耗1升汽油行駛的里程數(shù)越少.如圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列說法中,正確的是( )
A.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
B.以低于80km/h的速度行駛時(shí),行駛相同路程,三輛車中,乙車消耗汽油最少
C.以高于80km/h的速度行駛時(shí),行駛相同路程,丙車比乙車省油
D.以80km/h的速度行駛時(shí),行駛100公里,甲車消耗的汽油量約為10升
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).
(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com