【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,0),B(0,4),作△BOC,使△BOC與△ABO全等,則點(diǎn)C坐標(biāo)為__________________.

【答案】-20)或(2,4)或(-24

【解析】

分點(diǎn)Cx軸負(fù)半軸上和點(diǎn)C在第一象限,第二象限三種情況,利用全等三角形對(duì)應(yīng)邊相等解答即可.

如圖,點(diǎn)Cx軸負(fù)半軸上時(shí),

∵△BOCABO全等,

OC=OA=2,

∴點(diǎn)C-2,0),

點(diǎn)C在第一象限時(shí),

∵△BOCABO全等,

BC=OA=2,OB=BO=4,

∴點(diǎn)C24),

點(diǎn)C在第二象限時(shí),

∵△BOCABO全等,

BC=OA=2OB=BO=4,

∴點(diǎn)C-2,4);

綜上所述,點(diǎn)C的坐標(biāo)為(-20)或(2,4)或(-2,4).

故答案為:(-2,0)或(2,4)或(-24

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)小明做作業(yè)時(shí),不小心將方程中的一個(gè)常數(shù)污染了看不清楚,怎么辦呢?

1)小紅告訴他該方程的解是x3.那么這個(gè)常數(shù)應(yīng)是多少呢?

2)小芳告訴他該方程的解是負(fù)數(shù),并且這個(gè)常數(shù)是負(fù)整數(shù),請(qǐng)你試求該方程的解.(友情提醒:設(shè)這個(gè)常數(shù)為m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOD=150°,OB、OC、OM、ON 是∠AOD 內(nèi)的射線,若∠BOC=20°,∠AOB=10°,OM 平分∠AOC,ON 平分∠BOD,當(dāng)∠BOC 在∠AOD 內(nèi)繞著點(diǎn) O以 3°/秒的速度逆時(shí)針旋轉(zhuǎn) t 秒時(shí),當(dāng)∠AOM:∠DON=3:4 時(shí),則 t=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=45°,點(diǎn)M,N在邊OA上,OM=x,ON=x+4,點(diǎn)P是邊OB上的點(diǎn).若使點(diǎn)P,M,N構(gòu)成等腰三角形的點(diǎn)P恰好有三個(gè),則x的值是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC,ADE中,∠BAC=DAE=90°AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BDBE.以下四個(gè)結(jié)論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結(jié)論正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BCD點(diǎn),E、F分別為DB、DC的中點(diǎn),則圖中共有全等三角形 對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點(diǎn)A2,4)和B(﹣1,﹣5)兩點(diǎn).

1)求出該一次函數(shù)的表達(dá)式;

2)判斷(﹣43)是否在這個(gè)函數(shù)的圖象上?

3)求出該函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo)以及與坐標(biāo)軸圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計(jì)算:(2ab)2+a2(a+2b)(a2b)+a8÷a2

(2)解方程:

(3)先化簡(jiǎn),再求值:÷,其中x=﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),過點(diǎn)C作⊙O的切線,交BA的延長(zhǎng)線交于點(diǎn)D,過點(diǎn)B作BE⊥BA,交DC延長(zhǎng)線于點(diǎn)E,連接OE,交⊙O于點(diǎn)F,交BC于點(diǎn)H,連接AC.
(1)求證:∠ECB=∠EBC;
(2)連接BF,CF,若CF=6,sin∠FCB= ,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案