【題目】定義:若有理數(shù)a,b滿足等式,則稱a,b是“雉水有理數(shù)對”,記作如:數(shù)對,都是“雉水有理數(shù)對”.
數(shù)對______填“是”或“不是”“雉水有理數(shù)對”;
若是“雉水有理數(shù)對”,求m的值;
請寫出一個符合條件的“錐水有理數(shù)對”______注意:不能與題目中已有的“雉水有理數(shù)對”重復
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是2019年4月份的日歷,現(xiàn)用一長方形在日歷表中任意框出4個數(shù)(如圖2),下列表示a,b,c,d之間關(guān)系的式子中不正確的是( )
A. a﹣d=b﹣cB. a+c+2=b+dC. a+b+14=c+dD. a+d=b+c
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市設(shè)計的長方形休閑廣場如圖所示,兩端是兩個半圓形的花壇,中間是一個直徑為長方形寬度一半的圓形噴水池.
(1)用圖中所標字母表示廣場空地(圖中陰影部分)的面積.
(2)若休閑廣場的長為90米,寬為40米,求廣場空地的面積(計算結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,ADBC,E是AB 的中點,連接DE并延長交CB 的延長線于點F,點G在BC邊上,且GDF ADF .
(1)求證:ADE ≌ BFE ;
(2)連接EG ,判斷EG 與DF 的位置關(guān)系,并說明理由;
(3)若CDF 90,DF 4,CD 3 , CF 5 ,求RtCDF的三條角平分線的交點O 到邊CF的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點,點A的坐標為(2,3),點B的坐標為(n,1).
(1)求n的值,并結(jié)合圖象,直接寫出不等式<kx+b的解集;
(2)點E為x軸上一個動點,若S△AEB=6,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,⊙O是△ABC外接圓,點D是圓上一點,點D、B分別在AC兩側(cè),且BD=BC,連接AD、BD、OD、CD,延長CB到點P,使∠APB=∠DCB.
(1)求證:AP為⊙O的切線;
(2)若⊙O的半徑為1,當△OED是直角三角形時,求△ABC的面積;
(3)若△BOE、△DOE、△AED的面積分別為a、b、c,試探究a、b、c之間的等量關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】方程(組)與不等式(組)是代數(shù)的重要組成部分,也是解決數(shù)學問題的重要工具,請利用所學,解決以下 3 個問題:
(1)當 k 為何整數(shù)時,關(guān)于 x , y 的方程組 的解滿足 x y 且 x y 4 ;
(2)已知正整數(shù) a ,使得關(guān)于 x , y 的方程組的解是整數(shù),解關(guān)于 x 的不等式;
(3)已知 x ,y ,z 為 3 個非負實數(shù),且滿足3x 2 y z 5 ,x y z 2 ,記 S 2x y z對于符合題意的任意實數(shù) S ,不等式 2m S 3 始終成立,試確定 m 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知點A(a,0),B(0,b),且a、b滿足=0, □ABCD的邊AD與y軸交于點E(0,2),且E為AD中點,雙曲線經(jīng)過C、D兩點.
(1)求k的值;
(2)點P在雙曲線上,點Q在y軸上,若以點A、B、P、Q為頂點的四邊形是平行四邊形,試求滿足要求的所有點P、Q的坐標;
(3)以線段AB為對角線作正方形AFBH(如圖3),點T是邊AF上一動點,M是HT的中點,MN⊥HT,交AB于N,當T在AF上運動時,的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請求出其值,并給出你的證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC的三邊分別為a、b、c,則下列條件中不能判定△ABC是直角三角形的是( 。
A. b2=a2﹣c2B. a:b:c=1::2
C. ∠C=∠A﹣∠BD. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com