在平面直角坐標(biāo)系中,已知拋物線y=-
1
2
x2+bx+c(b,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,-1),C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.

(1)如圖,若該拋物線過(guò)A,B兩點(diǎn),求該拋物線的函數(shù)表達(dá)式;
(2)平移(1)中的拋物線,使頂點(diǎn)P在直線AC上滑動(dòng),且與AC交于另一點(diǎn)Q,取BC的中點(diǎn)N,連接NP,BQ,試探究
PQ
NP+BQ
是否存在最大值?若存在,求出該最大值;若不存在,請(qǐng)說(shuō)明理由.
考點(diǎn):二次函數(shù)綜合題
專題:
分析:(1)先求出點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法求出拋物線的函數(shù)表達(dá)式;
(2)易得PQ=2
2
為定值,因此當(dāng)NP+BQ取最小值時(shí),
PQ
NP+BQ
有最大值.如答圖2所示,作點(diǎn)B關(guān)于直線AC的對(duì)稱點(diǎn)B′,由分析可知,當(dāng)B′、Q、F(AB中點(diǎn))三點(diǎn)共線時(shí),NP+BQ最小,最小值為線段B′F的長(zhǎng)度.
解答:解:(1)∵等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,-1),C的坐標(biāo)為(4,3)
∴點(diǎn)B的坐標(biāo)為(4,-1).
∵拋物線過(guò)A(0,-1),B(4,-1)兩點(diǎn),
c=-1
-
1
2
×16+4b+c=-1
,
解得:b=2,c=-1,
∴拋物線的函數(shù)表達(dá)式為:y=-
1
2
x2+2x-1.

(2)
PQ
NP+BQ
存在最大值.理由如下:
易知PQ=2
2
為定值,則當(dāng)NP+BQ取最小值時(shí),
PQ
NP+BQ
有最大值.

如答圖2,取點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B′,易得點(diǎn)B′的坐標(biāo)為(0,3),BQ=B′Q.
連接QF,F(xiàn)N,QB′,易得FN∥PQ,且FN=PQ,
∴四邊形PQFN為平行四邊形.
∴NP=FQ.
∴NP+BQ=FQ+B′Q≥FB′=
22+42
=2
5

∴當(dāng)B′、Q、F三點(diǎn)共線時(shí),NP+BQ最小,最小值為2
5

PQ
NP+BQ
的最大值為
2
2
2
5
=
10
5
點(diǎn)評(píng):本題為二次函數(shù)中考?jí)狠S題,考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、一次函數(shù)、幾何變換(平移,對(duì)稱)、等腰直角三角形、平行四邊形、軸對(duì)稱-最短路線問(wèn)題等知識(shí)點(diǎn),考查了存在型問(wèn)題和分類討論的數(shù)學(xué)思想,試題難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,菱形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,OE∥DC交BC于點(diǎn)E,AC=6,BD=8,則OE的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)2
12
+3
1
1
3
-
5
1
3
-
2
3
48
;
(2)
a2
a2+2a
•(
a2
a-2
-
4
a-2
);
(3)x=2+
3
,y=2-
3
,求代數(shù)式(
x+y
x-y
-
x-y
x+y
)•(
1
x2
-
1
y2
)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,是一個(gè)規(guī)格為8×8的球桌,小明用A球撞擊B球,到C處反彈,再撞擊桌邊D處,請(qǐng)選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并用坐標(biāo)表示各點(diǎn)的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把拋物線y=ax2+bx+c向左平移2個(gè)單位,同時(shí)向下平移1個(gè)單位后,恰好與拋物線y=2x2+4x+1重合.請(qǐng)求出a,b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方形OABC中,OA=BC=10,AB=OC=6,以O(shè)為原點(diǎn),OA為x軸,OC為y 軸,建立平面直角坐標(biāo)系.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→O→C→B路線運(yùn)動(dòng)到點(diǎn)B停止,速度為4個(gè)單位長(zhǎng)度/秒;動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿O→C→B路線運(yùn)動(dòng)到點(diǎn)B停止,速度為2個(gè)單位長(zhǎng)度/秒;當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t.
(1)寫(xiě)出A、B、C三個(gè)點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P恰好追上點(diǎn)Q時(shí),求此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段BC上時(shí),連接AP、AQ,若△APQ的面積為3,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,D、E分別是不等邊三角形ABC(即AB≠BC≠AC)的邊AB、AC的中點(diǎn).O是△ABC平面上的一動(dòng)點(diǎn),連接OB、OC,G、F分別是OB、OC的中點(diǎn),順次連接點(diǎn)D、G、F、E.
(1)如圖,當(dāng)點(diǎn)O在△ABC內(nèi)時(shí),求證:四邊形DGFE是平行四邊形;
(2)若連接AO,且滿足AO=BC,AO⊥BC.問(wèn)此時(shí)四邊形DGFE又是什么形狀?并請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=x2沿直線y=x向上平移
2
個(gè)單位后,頂點(diǎn)在直線y=x上的M處,則平移后拋物線的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點(diǎn)B,A,D在一條直線上,連接BE,CD,M,N分別為BE,CD的中點(diǎn),下列結(jié)論:
(1)BE=CD;(2)D為AB的中點(diǎn);(3)∠AMN=90°-
∠MAN
2
,
其中正確的有
 
(填寫(xiě)序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案