【題目】提出命題:如圖,在四邊形ABCD中,∠A=∠C,∠ABC=∠ADC,求證:四邊形ABCD是平行四邊形.
小明提供了如下解答過(guò)程:
證明:連接BD.
∵∠1+∠3=180-∠A,∠2+∠4=180―∠C,∠A=∠C,
∴ ∠1+∠3=∠2+∠4.
∵∠ABC=∠ADC,
∴∠1=∠4,∠2=∠3.
∴AB∥CD,AD∥BC.
∴四邊形ABCD是平行四邊形(兩組對(duì)邊分別平行的四邊形是平行四邊形).
反思交流:(1)請(qǐng)問(wèn)小明的解法正確嗎?如果有錯(cuò),說(shuō)明錯(cuò)在何處,并給出正確的證明過(guò)程.
(2)用語(yǔ)言敘述上述命題:___________________________________________________.
運(yùn)用探究:(3)下列條件中,能確定四邊形ABCD是平行四邊形的是(_____)
A. ∠A∶∠B∶∠C∶∠D=1∶2∶3∶4 B. ∠A∶∠B∶∠C∶∠D=1∶3∶1∶3
C. ∠A∶∠B∶∠C∶∠D=2∶3∶3∶2 D. ∠A∶∠B∶∠C∶∠D=1∶1∶3∶3
【答案】 (1)答案見(jiàn)解析;(2)兩組對(duì)角分別相等的四邊形是平行四邊形; (3)B
【解析】試題分析:(1)利用四邊形的內(nèi)角和和已知條件中的對(duì)角相等得到鄰角互補(bǔ),從而判定兩組對(duì)邊平行,進(jìn)而證得結(jié)論;(2)兩組對(duì)角分別相等的四邊形是平行四邊形;(3)由(1)即可得出結(jié)論.
解:(1)小明的解法不正確,錯(cuò)在推出∠1+∠3=∠2+∠4后,由∠ABC=∠ADC,不能直接推出∠1=∠4,∠2=∠3.
正確證明:因?yàn)椤?/span>A+∠ABC+∠C+∠ADC=360°,∠A=∠C,∠ABC=∠ADC,所以2∠A+
2∠ABC=360°.所以∠A+∠ABC=180°.所以AD∥BC.同理∠A+∠ADC=180°.所以AB∥CD.所以四邊形ABCD是平行四邊形.
(2)兩組對(duì)角分別相等的四邊形是平行四邊形
(3)∵兩組對(duì)角分別相等的四邊形是平行四邊形,
∴B正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB⊥BC,AE平分∠BAD交BC于點(diǎn)E,AE⊥DE,∠1+∠2=90°,M,N分別是BA,CD延長(zhǎng)線上的點(diǎn),∠EAM和∠EDN的平分線交于點(diǎn)F.下列結(jié)論:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F為定值其中結(jié)論正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)若,則
(2)如圖,CB∥OA,∠B=∠A=108°,E、F在CB上,且滿足∠FOC=∠AOC,OE平分∠BOF,若平行移動(dòng)AC,當(dāng)∠OCA= 時(shí)?梢允埂OEB=∠OCA。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(4,3),B(3,1),C(1,2).
(1)將三角形ABC三個(gè)頂點(diǎn)的橫坐標(biāo)都減去6,分別得到A1、B1、C1,依次連接A1,B1,C1,各點(diǎn),請(qǐng)寫出A1、B1、C1的坐標(biāo)并畫出△A1B1C1,并判斷所得三角形A1B1C1與三角形ABC的大小、形狀和位置有什么關(guān)系?
(2)將三角形ABC三個(gè)頂點(diǎn)的縱坐標(biāo)都減去5,分別得到A2、B2、C2,依次連接A2,B2,C2,各點(diǎn),請(qǐng)寫出A2、B2、C2的坐標(biāo)并畫出△A2B2C2,并判斷所得三角形A2B2C2與三角形ABC的大小、形狀和位置有什么關(guān)系?
(3)求△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長(zhǎng)線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DG⊥AE,垂足為G,若DG=1,則AE的邊長(zhǎng)為( ).
A.2 B.4 C.4 D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)底面直徑為5 cm,高為18 cm的圓柱形瓶?jī)?nèi)裝滿水,再將瓶?jī)?nèi)的水倒入一個(gè)底面直徑為6cm,高為10cm的圓柱形玻璃中,能否完全裝下?若裝不下,那么瓶?jī)?nèi)水面還有多高?若未能裝滿,求杯內(nèi)水面離杯口的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記為<x>,即當(dāng)n為非負(fù)整數(shù)時(shí),若,則<x>=n,如<0.46>=0,<3.67>=4。給出下列關(guān)于<x>的結(jié)論:
①<1.493>=1;
②<2x>=2<x>;
③若,則實(shí)數(shù)x的取值范圍是;
④當(dāng)x≥0,m為非負(fù)整數(shù)時(shí),有;
⑤。
其中,正確的結(jié)論有 (填寫所有正確的序號(hào))。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)在第一象限,過(guò)點(diǎn)A向x軸作垂線,垂足為點(diǎn)B,連接OA,,點(diǎn)M從O出發(fā),沿y軸的正半軸以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)N從點(diǎn)B出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度向x軸負(fù)方向運(yùn)動(dòng),點(diǎn)M與點(diǎn)N同時(shí)出發(fā),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,連接AM,AN,MN.
求a的值;
當(dāng)時(shí),
請(qǐng)?zhí)骄?/span>,,之間的數(shù)量關(guān)系,并說(shuō)明理由;
試判斷四邊形AMON的面積是否變化?若不變化,請(qǐng)求出其值;若變化,請(qǐng)說(shuō)明理由.
當(dāng)時(shí),請(qǐng)求出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,G是AD延長(zhǎng)線上的一點(diǎn),且DG=AD,動(dòng)點(diǎn)M從A點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿著A→C→G的路線向G點(diǎn)勻速運(yùn)動(dòng)(M不與A,G重合),設(shè)運(yùn)動(dòng)時(shí)間為t秒,連接BM并延長(zhǎng)AG于N.
(1)是否存在點(diǎn)M,使△ABM為等腰三角形?若存在,分析點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由;
(2)當(dāng)點(diǎn)N在AD邊上時(shí),若BN⊥HN,NH交∠CDG的平分線于H,求證:BN=HN;
(3)過(guò)點(diǎn)M分別作AB,AD的垂線,垂足分別為E,F(xiàn),矩形AEMF與△ACG重疊部分的面積為S,求S的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com