a+b |
2 |
ab |
a+b |
2 |
ab |
a+b |
2 |
ab |
a+b |
2 |
ab |
a+b |
2 |
ab |
a+b |
2 |
ab |
a+b |
2 |
ab |
a+b |
2 |
AD |
CD |
CD |
BD |
ab |
a+b |
2 |
ab |
a+b |
2 |
ab |
a+b |
2 |
ab |
1 |
x |
1 |
x |
x•
|
1 |
x |
a+b |
2 |
ab |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
a+b |
2 |
ab |
a+b |
2 |
ab |
a+b |
2 |
ab |
a+b |
2 |
ab |
a+b |
2 |
ab |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(江蘇省蘇州市卷)數(shù)學(xué) 題型:解答題
(2011•德州)●觀察計(jì)算
當(dāng)a=5,b=3時(shí),與的大小關(guān)系是>.
當(dāng)a=4,b=4時(shí),與的大小關(guān)系是=.
●探究證明
如圖所示,△ABC為圓O的內(nèi)接三角形,AB為直徑,過(guò)C作CD⊥AB于D,設(shè)AD=a,BD=b.
(1)分別用a,b表示線段OC,CD;
(2)探求OC與CD表達(dá)式之間存在的關(guān)系(用含a,b的式子表示).
●歸納結(jié)論
根據(jù)上面的觀察計(jì)算、探究證明,你能得出與的大小關(guān)系是:.
●實(shí)踐應(yīng)用
要制作面積為1平方米的長(zhǎng)方形鏡框,直接利用探究得出的結(jié)論,求出鏡框周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年山東省德州市中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com