【題目】平面直角坐標系中,已知點A0,10),點Pm,10),連接AP、OP,將AOP沿直線OP翻折得到EOP(點A的對應點為點E).若點Ex軸的距離不大于6,則m的取值范圍是_____

【答案】5≤m≤20或﹣20≤m5

【解析】

注意到A點與E點關于直線OP對稱,因此只要求出E點坐標(用m表示)即可根據(jù)點Ex軸的距離不大于6列出不等式解出m的取值范圍.

由題意知m≠0
P點坐標可得直線OP解析式為y=x,
由軸對稱性質可知OP垂直平分AE,
A010),
∴直線AE的解析式為y=-x+10
解方程組 ,

解得
AE的中點坐標為(),
E點坐標為(10),
∵點Ex軸的距離不大于6
-6≤10≤6,解得5≤m≤20-20≤m≤-5
故答案為:5≤m≤20-20≤m≤-5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,己知點C是線段BD上一點,以BC DC為一邊在BD的同一側作等邊△ABC和等邊△ECD,連接AD, BE相交于點F, ACBE交于點M, AD, CE交于點N,(注:等邊三角形的每一個內角都等于60° )

(1) 求證: AD=BE

(2) 線段CMCN相等嗎?請證明你的結論。

(3) 求∠BFD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y1= (x+1)2+1與y2=a(x﹣4)2﹣3交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于B、C兩點,且D、E分別為頂點.則下列結論: ①a= ;②AC=AE;③△ABD是等腰直角三角形;④當x>1時,y1>y2
其中正確結論的個數(shù)是(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,ABBCABBC,ABCD,AEBDEBCF.

(1)AB2CD

①求證:BC2BF;

②連CE,若DE6,CE,求EF的長;

(2)AB6,則CE的最小值為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,長方形紙片ABCD的長AD9cm,寬AB3cm,將其折疊,使點D與點B重合.

求:(1)折疊后DE的長;(2)以折痕EF為邊的正方形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,AB6E為直線AB上一點,EFAB交對角線ACF,點GAF中點,連接CE,點MCE中點,連接BM并延長交直線AC于點O

1)如圖1,E在邊AB上時,   ,∠GBM   ;

2)將(1)中AEFA逆時針旋轉任意一銳角,其他條件不變,如圖2,(1)中結論是否任然成立?請加以證明.

3)若BE2,則CO長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線ACBD相交于點O,不能判斷四邊形ABCD是平行四邊形的是(  )

A.AB=DC,AD=BCB.ABDCADBC

C.ABDC,AD=BCD.OA=OCOB=OD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 的圖象過點C(0,1),頂點為Q(2,3),點D在x軸正半軸上,線段OD=OC.

(1)求拋物線的解析式;
(2)拋物線上是否存在點M,使得△CDM是以CD為直角邊的直角三角形?若存在,請求出M點的坐標;若不存在,請說明理由;
(3)將直線CD繞點C逆時針方向旋轉45°所得直線與拋物線相交于另一點E,連接QE.若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點的移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索與拓展應用,
已知△ABC為等邊三角形,點D為直線BC上的一動點(點D不與B、C重合),以AD為邊作菱形ADEF(A、D、E、F按逆時針排列),使∠DAF=60°,連接CF.
(1)如圖1,當點D在邊BC上時,求證:①BD=CF;②AC=CF+CD;

(2)如圖2,當點D在邊BC的延長線上且其他條件不變時,結論AC=CF+CD是否成立?若不成立,請寫出AC、CF、CD之間存在的數(shù)量關系,并說明理由;

(3)如圖3,當點D在邊CB的延長線上且其他條件不變時,補全圖形,并直接寫出AC、CF、CD之間存在的數(shù)量關系.

查看答案和解析>>

同步練習冊答案