已知y+3與x+2成正比例,且當(dāng)x=3時,y=7.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x=-1時,求y的值;
(3)當(dāng)y=0時,求x的值.

(1)y=2x+1;(2)-1;(3).

解析試題分析:(1)已知y+3與x+2成正比例,所以,設(shè)y+3="k(" x+2),把x=3,y=7代入求出k的值,即可寫出y與x之間的函數(shù)關(guān)系式,
(2)把x=-1代入y與x之間的函數(shù)關(guān)系式,求出y的值.
(3)把y=0代入y與x之間的函數(shù)關(guān)系式,求出x的值.
試題解析:(1)y=2x+1
(2)x=-1時y= -1
(3)y=0時x=
考點:1.正比例函數(shù)關(guān)系式.2.函數(shù)值和自變量值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖:一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(-2,6)和點B(4,n)

(1)求反比例函數(shù)的解析式和B點坐標(biāo)
(2)根據(jù)圖象回答,在什么范圍時,一次函數(shù)的值大于反比例函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,1),B(-1,)兩點.

(1)求m、k、b的值;
(2)連接OA、OB,計算三角形OAB的面積;
(3)結(jié)合圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線y=kx-2與x軸、y軸分別交于B、C兩點,OB:OC=
 
(1)求B點的坐標(biāo)和k的值.
(2)若點A(x,y)是第一象限內(nèi)的直線y=kx-2上的一個動點,當(dāng)點A運動過程中,①試寫出△AOB的面積S與x的函數(shù)關(guān)系式;②探索:當(dāng)點A運動到什么位置時,△AOB的面積是1.③在②成立的情況下,x軸上是否存在一點P,使△POA是等腰三角形.若存在,請寫出滿足條件的所有P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線與x軸、y軸分別交于點A、B,線段AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°.

(1)求△AOB的面積;
(2)求點C坐標(biāo);
(3)點P是x軸上的一個動點,設(shè)P(x,0)
①請用x的代數(shù)式表示PB2、PC2;
②是否存在這樣的點P,使得|PC-PB|的值最大?如果不存在,請說明理由;
如果存在,請求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,兩摞相同規(guī)格的飯碗整齊地疊放在桌面上,請根據(jù)圖中給的數(shù)據(jù)信息,解答下列問題:

(1)求整齊擺放在桌面上飯碗的高度y(cm)與飯碗數(shù)x(個)之間的一次函數(shù)解析式;
(2)把這兩摞飯碗整齊地擺成一摞時,這摞飯碗的高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

國家推行“節(jié)能減排,低碳經(jīng)濟”的政策后,某企業(yè)推出一種叫“CNG”的改燒汽油為天然氣的裝置,每輛車改裝費為b元.據(jù)市場調(diào)查知:每輛車改裝前、后的燃料費(含改裝費)(單位:元)與正常運營時間(單位:天)之間分別滿足關(guān)系式:、,如圖所示.

試根據(jù)圖像解決下列問題:
(1)每輛車改裝前每天的燃料費=     元,每輛車的改裝費b=    元.正常運營    天后,就可以從節(jié)省燃料費中收回改裝成本.
(2)某出租汽車公司一次性改裝了100輛車,因而,正常運營多少天后共節(jié)省燃料費40萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)(m≠0)的圖象有公共點A(1,2).直線l⊥x軸于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B,C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線MN與x軸,y軸分別相交于A,C兩點,分別過A,C兩點作x軸,y軸的垂線相交于B點,且OA,OC(OA>OC)的長分別是一元二次方程x2﹣14x+48=0的兩個實數(shù)根.

(1)求C點坐標(biāo);
(2)求直線MN的解析式;
(3)在直線MN上存在點P,使以點P,B,C三點為頂點的三角形是等腰三角形,請直接寫出P點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案