【題目】小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連結(jié)AE并延長交BC的延長線于點F.求證:S四邊形ABCD=S△ABF.(S表示面積)
問題遷移:如圖2,在已知銳角∠AOB內(nèi)有一定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值.請問當(dāng)直線MN在什么位置時,△MON的面積最小,并說明理由.
實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部分計劃以公路OA、OB和經(jīng)過防疫站的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66,∠POB=30,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66≈0.91,tan66≈2.25,≈1.73)
拓展延伸:如圖4,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)、(6,3)、、(4,2),過點P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形的面積的最大值.
【答案】問題情境:根據(jù)已知可以求得△ADE≌△FCE,就可以得出S△ADE=S△FCE,從而得出結(jié)論。
問題遷移:根據(jù)問題情境的結(jié)論可以得出當(dāng)直線旋轉(zhuǎn)到點P是MN的中點時S△MON最小,過點M作MG∥OB交EF于G.由全等三角形的性質(zhì)可以得出結(jié)論。
實際運用:∴。
拓展延伸:截得四邊形面積的最大值為10
【解析】
問題情境:根據(jù)已知可以求得△ADE≌△FCE,就可以得出S△ADE=S△FCE,從而得出結(jié)論。
問題遷移:根據(jù)問題情境的結(jié)論可以得出當(dāng)直線旋轉(zhuǎn)到點P是MN的中點時S△MON最小,過點M作MG∥OB交EF于G.由全等三角形的性質(zhì)可以得出結(jié)論。
實際運用:如圖3,作PP1⊥OB,MM1⊥OB,垂足分別為P1,M1,再根據(jù)條件由三角函數(shù)值就可以求出結(jié)論。
拓展延伸:分情況討論當(dāng)過點P的直線l與四邊形OABC的一組對邊OC、AB分別交于點M、N,延長OC、AB交于點D,由條件可以得出AD=6,就可以求出△OAD的面積,再根據(jù)問題遷移的結(jié)論就可以求出最大值;
當(dāng)過點P的直線l與四邊形OABC的另一組對邊CB、OA分別交M、N,延長CB交x軸于T,由B、C的坐標可得直線BC的解析式,就可以求出T的坐標,從而求出△OCT的面積,再由問題遷移的結(jié)論可以求出最大值,通過比較即可以求出結(jié)論。
解:問題情境:證明:∵AD∥BC,∴∠DAE=∠F,∠D=∠FCE。
∵點E為DC邊的中點,∴DE=CE。
∵在△ADE和△FCE中,,
∴△ADE≌△FCE(AAS)。∴S△ADE=S△FCE。
∴S四邊形ABCE+S△ADE=S四邊形ABCE+S△FCE,即S四邊形ABCD=S△ABF。
問題遷移:當(dāng)直線旋轉(zhuǎn)到點P是MN的中點時S△MON最小,理由如下:
如圖2,過點P的另一條直線EF交OA、OB于點E、F,
設(shè)PF<PE,過點M作MG∥OB交EF于G,
由問題情境可以得出當(dāng)P是MN的中點時S四邊形MOFG=S△MON。
∵S四邊形MOFG<S△EOF,∴S△MON<S△EOF。
∴當(dāng)點P是MN的中點時S△MON最小。
實際運用:如圖3,作PP1⊥OB,MM1⊥OB,垂足分別為P1,M1,
在Rt△OPP1中,∵∠POB=30°,
∴PP1=OP=2,OP1=2。
由問題遷移的結(jié)論知,當(dāng)PM=PN時,△MON的面積最小,
∴MM1=2PP1=4,M1P1=P1N。
在Rt△OMM1中,,即,
∴。∴。
∴。
∴。
拓展延伸:①如圖4,當(dāng)過點P的直線l與四邊形OABC的一組對邊OC、AB分別交于點M、N,延長OC、AB交于點D,
∵C,∴∠AOC=45°。∴AO=AD。
∵A(6,0),∴OA=6。∴AD=6。
∴。
由問題遷移的結(jié)論可知,當(dāng)PN=PM時,△MND的面積最小,
∴四邊形ANMO的面積最大。
作PP1⊥OA,MM1⊥OA,垂足分別為P1,M1,
∴M1P1=P1A=2。∴OM1=M1M=2,∴MN∥OA。
∴。
②如圖5,當(dāng)過點P的直線l與四邊形OABC的另一組對邊CB、OA分別交M、N,延長CB交x軸于T,
設(shè)直線BC的解析式為y=kx+b,
∵C、B(6,3),
∴,解得:。
∴直線BC的解析式為。
當(dāng)y=0時,x=9,∴T(9,0)。
∴。
由問題遷移的結(jié)論可知,當(dāng)PM=PN時,△MNT的面積最小,
∴四邊形CMNO的面積最大。
∴NP1=M1P1,MM1=2PP1=4。∴,解得x=5。∴M(5,4)。
∴OM1=5。
∵P(4,2),∴OP1=4。∴P1M1=NP1=1。∴ON=3。∴NT=6。
∴。
∴。
∴綜上所述:截得四邊形面積的最大值為10。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點D,CA=CD.
(1)連接BC,求證:BC=OB;
(2)E是中點,連接CE,BE,若BE=2,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在△ABC中,∠B=45°,點D是BC邊的中點,DE⊥BC于點D,交AB于點E,連接CE.
(1)求∠AEC的度數(shù);
(2)請你判斷AE、BE、AC三條線段之間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=12,點E為BC的中點,以CD為直徑作半圓CFD,點F為半圓的中點,連接AF,EF,圖中陰影部分的面積是( 。
A. 18+36π B. 24+18π C. 18+18π D. 12+18π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.
(1)求該型號自行車的進價和標價分別是多少元?
(2)若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對角線長分別為6和8的菱形ABCD如圖所示,點O為對角線的交點,過點O折疊菱形,使B的對應(yīng)點為B',C的對應(yīng)點為C',MN是折痕若B'M=1,則CN的長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,函數(shù)的圖象與直線y=2x+1交于點A(1,m).
(1)求k、m的值;
(2)已知點P(n,0)(n≥1),過點P作平行于y軸的直線,交直線y=2x+1于點B,交函數(shù)的圖象于點C.橫、縱坐標都是整數(shù)的點叫做整點.
①當(dāng)n=3時,求線段AB上的整點個數(shù);
②若的圖象在點A、C之間的部分與線段AB、BC所圍成的區(qū)域內(nèi)(包括邊界)恰有5個整點,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D、D為⊙O上兩點,CF⊥AB于點F,CE⊥AD交AD的延長線于點E,且CE=CF.
(1)求證:CE是⊙O的切線;
(2)連接CD、CB,若AD=CD=a,求四邊形ABCD面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com