【題目】二次函數(shù)y=ax2+bx+c圖象如圖,下列正確的個數(shù)為( )
①bc>0;
②2a﹣3c<0;
③2a+b>0;
④ax2+bx+c=0有兩個解x1 , x2 , 當x1>x2時,x1>0,x2<0;
⑤a+b+c>0;
⑥當x>1時,y隨x增大而減。
A.2
B.3
C.4
D.5
【答案】B
【解析】解:①∵拋物線開口向上,
∴a>0,
∵對稱軸在y軸右側,
∴a,b異號即b<0,
∵拋物線與y軸的交點在負半軸,
∴c<0,
∴bc>0,故①正確;
②∵a>0,c<0,
∴2a﹣3c>0,故②錯誤;
③∵對稱軸x=﹣ <1,a>0,
∴﹣b<2a,
∴2a+b>0,故③正確;
④由圖形可知二次函數(shù)y=ax2+bx+c與x軸的兩個交點分別在原點的左右兩側,
即方程ax2+bx+c=0有兩個解x1 , x2 , 當x1>x2時,x1>0,x2<0,故④正確;
⑤由圖形可知x=1時,y=a+b+c<0,故⑤錯誤;
⑥∵a>0,對稱軸x=1,
∴當x>1時,y隨x增大而增大,故⑥錯誤.
綜上所述,正確的結論是①③④,共3個.
故選:B.
【考點精析】關于本題考查的二次函數(shù)圖象以及系數(shù)a、b、c的關系,需要了解二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c)才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺規(guī)畫圓O,使圓O過A、D兩點,且圓心O在邊AC上.(保留作圖痕跡,不寫作法)
(2)求證:BC與圓O相切;
(3)設圓O交AB于點E,若AE=2,CD=2BD.求線段BE的長和弧DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),拋物線y=﹣ x2+x+c與x軸交于A、B兩點,與y軸交于點C,其中點A的坐標為(﹣2,0).
(1)求此拋物線的解析式;
(2)①若點D是第一象限內(nèi)拋物線上的一個動點,過點D作DE⊥x軸于E,連接CD,以OE為直徑作⊙M,如圖(2),試求當CD與⊙M相切時D點的坐標;
②點F是x軸上的動點,在拋物線上是否存在一點G,使A、C、G、F四點為頂點的四邊形是平行四邊形?若存在,求出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、F分別是BC、CD的中點,DE交AF于點M,點N為DE的中點.
(1)若AB=4,求△DNF的周長及sin∠DAF的值;
(2)求證:2ADNF=DEDM.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F分別是AD和AD延長線上的點,且DE=DF,連接BF、CE,且∠FBD=35°,∠BDF=75°,下列說法:①△BDF≌CDE;②ABD和△ACD面積相等;③BF∥CE;④∠DEC=70°,其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD為等腰梯形,AD∥BC,AB=CD,AD= ,E為CD中點,連接AE,且AE=2 ,∠DAE=30°,作AE⊥AF交BC于F,則BF=( )
A.1
B.3﹣
C. ﹣1
D.4﹣2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙M過原點O,與x軸交于A(4,0),與y軸交于B(0,3),點C為劣弧AO的中點,連接AC并延長到D,使DC=4CA,連接BD.
(1)求⊙M的半徑;
(2)證明:BD為⊙M的切線;
(3)在直線MC上找一點P,使|DP﹣AP|最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com