【題目】二次函數(shù)yax2+bx+ca≠0)圖象如圖,下列結(jié)論:①abc0;②2a+b0;③a-b+c0;④當(dāng)x≠1時(shí),a+bax2+bx:⑤4acb2.其中正確的有____________(只填序號).

【答案】②④⑤

【解析】

先根據(jù)圖象分析ab、c的正負(fù),再根據(jù)對稱軸x=、與坐標(biāo)軸的交點(diǎn)、頂點(diǎn)等情況分析,即可判斷每一個(gè)選項(xiàng)的正確與否.

解:根據(jù)拋物線的開口方向可知a0,它與y軸交點(diǎn)可知c0,再根據(jù)對稱軸x=y軸右邊,從而判斷b0,
abc0,即答案①錯(cuò)誤;
由圖象可知拋物線對稱軸是直線x=1,即x==1,b=-2a
2a+b=0,即答案②正確;
由圖象可知,當(dāng)x=-1時(shí),對應(yīng)圖象上的點(diǎn)在x軸下方,函數(shù)值小于0
a-b+c0,即答案③錯(cuò)誤;
觀察圖象可知,當(dāng)x=1時(shí),函數(shù)取得最大值a+b+c
∴當(dāng)x≠1時(shí),取得的函數(shù)值ax2+bx+ca+b+c,即a+bax2+bx,答案④正確;
根據(jù)圖象與x軸有兩個(gè)不同交點(diǎn)可知,b2-4ac0,
4acb2,即答案⑤正確.
故答案為:②④⑤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ACB為銳角.點(diǎn)D為射線BC上一動點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連結(jié)EC.如果AB=AC,BAC=90°

當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖1,請你判斷線段CE、BD之間的位置和數(shù)量關(guān)系(直接寫出結(jié)論);

當(dāng)點(diǎn)D在線段BC的延長線上時(shí),請你在圖2畫出圖形,判斷中的結(jié)論是否仍然成立,并證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)yaxh2+ka0)的圖象經(jīng)過原點(diǎn),最大值為16,且形狀與拋物線y4x2+2x3相同,則此函數(shù)的關(guān)系式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD是邊長為1的正方形,四邊形EFGH是邊長為2的正方形,點(diǎn)D與點(diǎn)F重合,點(diǎn)BDF)、H在同一條直線上.將正方形ABCD沿FH方向平移到點(diǎn)B與點(diǎn)H重合時(shí)停止.設(shè)點(diǎn)DF之間的距離為x,正方形ABCD與正方形EFGH重疊部分的面積為y,則能大致反映yx之間函數(shù)關(guān)系的圖像是( .

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖把一個(gè)長方形紙片沿EF 折疊后點(diǎn)D、C分別落在D′、C′的位置,若∠AED′50°,則∠EFC =( .

A.50°B.130°C.65°D.115°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A1B1C,連接AA1若∠AA1B1=15°,則∠B的度數(shù)是( )

A. 75° B. 60° C. 50° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為活躍聯(lián)歡晚會的氣氛,組織者設(shè)計(jì)了以下轉(zhuǎn)盤游戲:A、B兩個(gè)帶指針的轉(zhuǎn)盤分別被分成三個(gè)面積相等的扇形,轉(zhuǎn)盤A上的數(shù)字分別是1,6,8,轉(zhuǎn)盤B上的數(shù)字分別是4,5,7(兩個(gè)轉(zhuǎn)盤除表面數(shù)字不同外,其他完全相同).每次選擇2名同學(xué)分別撥動A、B兩個(gè)轉(zhuǎn)盤上的指針,使之產(chǎn)生旋轉(zhuǎn),指針停止后所指數(shù)字較大的一方為獲勝者,負(fù)者則表演一個(gè)節(jié)目(若箭頭恰好停留在分界線上,則重轉(zhuǎn)一次).作為游戲者,你會選擇A、B中哪個(gè)轉(zhuǎn)盤呢?并請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,AD是邊BC上的中線,過點(diǎn)AAEBC,過點(diǎn)DDEAB,DEAC、AE分別交于點(diǎn)O、點(diǎn)E,連結(jié)EC.

(1)求證:AD=EC;

(2)求證:四邊形ADCE是菱形;

(3)若AB=AO,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(0,4)B(1,0),C(5,0),其對稱軸與x軸相交于點(diǎn)M

(1)求拋物線的解析式;

(2)在拋物線的對稱軸上是否存在一點(diǎn)P,使△PAB的周長最。咳舸嬖,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案