【題目】已知一次函數(shù)y=﹣x+1與拋物線y=x2+bx+c交于A(0,1),B兩點,B點縱坐標為10,拋物線的頂點為C.
(1)求b,c的值;
(2)判斷△ABC的形狀并說明理由;
(3)點D、E分別為線段AB、BC上任意一點,連接CD,取CD的中點F,連接AF,EF.當四邊形ADEF為平行四邊形時,求平行四邊形ADEF的周長.
【答案】(1)b=2;(2)△ABC是直角三角形,理由見解析;(3)平行四邊形ADEF周長為6+6.
【解析】
(1)把A坐標代入拋物線解析式可求出c的值,把B的縱坐標代入直線解析式可求出其橫坐標,再代入拋物線解析式即可求出b的值;
(2)△ABC的形狀是直角三角形,分別作BG垂直于y軸,CH垂直于y軸,依次求∠BAG=45°,∠CAH=45°,進而得到∠CAB=90°;
(3)首先利用勾股定理易求AB的長,進而得到AC的長,利用三角形中位線的性質即可求出EF的長,再利用勾股定理即可求出AF的長,繼而求出平行四邊形ADEF的周長.
(1)把A(0,1),代入y=x2+bx+c,
解得c=1,
將y=10代入y=﹣x+1,得x=﹣9,
∴B點坐標為(﹣9,10),
將B (﹣9,10),代入y=x2+bx+c
得b=2;
(2)△ABC是直角三角形,
理由如下:
∵y=x2+2x+1=(x+3)2﹣2,
∴點C的坐標為(﹣3,﹣2),
分別作BG垂直于y軸,CH垂直于y軸
∵BG=AG=9,
∴∠BAG=45°,
同理∠CAH=45°,
∴∠CAB=90°
∴△ABC是直角三角形;
(3)∵BG=AG=9,
∴AB=9,
∵CH=AH=3,
∴AC=3,
∵四邊形ADEF為平行四邊形,
∴AD∥EF,
又∵F為CD中點,
∴CE=BE,
即EF為△DBC的中位線,EF
∴EF=AD=BD,
∵AB=9,
∴EF=AD=3
在Rt△ACD中,AD=3,AC=3,
∴CD=6,
∴AF=3,
∴平行四邊形ADEF周長為6+6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,,,,AD、BE相交于點M,連接CM.
求證:;
求的度數(shù)用含的式子表示;
如圖2,當時,點P、Q分別為AD、BE的中點,分別連接CP、CQ、PQ,判斷的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=40°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,BC=5,E、P分別在AD.BC上,且DE=BP=1.連接BE,EC,AP,DP,PD與CE交于點F,AP與BE交于點H.
(1)判斷△BEC的形狀,并說明理由;
(2)判斷四邊形EFPH是什么特殊四邊形,并證明你的判斷;
(3)求四邊形EFPH的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若點P(a,b)在函數(shù)y=的圖象上,將以a為二次項系數(shù),b為一次項系數(shù)構造的二次函數(shù)y=ax2+bx稱為函數(shù)y=的一個“派生函數(shù)”.例如:點(2, )在函數(shù)y=的圖象上,則函數(shù)y=2x2+ 稱為函數(shù)y=的一個“派生函數(shù)”.現(xiàn)給出以下兩個命題:
(1)存在函數(shù)y=的一個“派生函數(shù)”,其圖象的對稱軸在y軸的右側
(2)函數(shù)y=的所有“派生函數(shù)”的圖象都經過同一點,下列判斷正確的是( 。
A. 命題(1)與命題(2)都是真命題
B. 命題(1)與命題(2)都是假命題
C. 命題(1)是假命題,命題(2)是真命題
D. 命題(1)是真命題,命題(2)是假命題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織一項球類對抗賽,在本校隨機調查了若干名學生,對他們每人最喜歡的球類運動進行了統(tǒng)計,并繪制如圖1、圖2所示的條形和扇形統(tǒng)計圖.
根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)求本次被調查的學生人數(shù),并補全條形統(tǒng)計圖;
(2)若全校有1500名學生,請你估計該校最喜歡籃球運動的學生人數(shù);
(3)根據(jù)調查結果,請你為學校即將組織的一項球類比賽提出合理化建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點P是BC上的一動點,AP=AQ,∠PAQ=90°,連接CQ.
(1)求證:CQ⊥BC.
(2)△ACQ能否是直角三角形?若能,請直接寫出此時點P的位置;若不能,請說明理由.
(3)當點P在BC上什么位置時,△ACQ是等腰三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD內接于⊙O,DA、CB的延長線交于點P,連接AC、BD,BD=BC.
(1)證明:AB平分∠PAC;
(2)若AC是直徑,AC=5,BC=4,求DC長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com