【題目】已知:在△ABC中,∠B=∠C,DE分別是線(xiàn)段BC,AC上的一點(diǎn),且ADAE,

1)如圖1,若∠BAC90°,DBC中點(diǎn),則∠2的度數(shù)為_____

2)借助圖2探究并直接寫(xiě)出∠1和∠2的數(shù)量關(guān)系_____

【答案】22.5 122

【解析】

1)根據(jù)三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和,∠AED=∠EDC+C,∠ADC=∠B+BAD,再根據(jù)等邊對(duì)等角的性質(zhì)∠B=∠C,∠ADE=∠AED,進(jìn)而得出∠BAD2CDE

2)根據(jù)三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和,∠AED=∠EDC+C,∠ADC=∠B+BAD,再根據(jù)等邊對(duì)等角的性質(zhì)∠B=∠C,∠ADE=∠AED,進(jìn)而得出∠BAD2CDE

解:(1)∠AED=∠CDE+C,∠ADC=∠B+BAD,

ADAE,

∴∠AED=∠ADE

∵∠B=∠C,∠BAC90°,DBC中點(diǎn),

∴∠BAD45°,

∴∠B+BAD=∠EDC+C+CDE,

即∠BAD2CDE

∴∠2225°;

2)∠AED=∠CDE+C,∠ADC=∠B+BAD,

ADAE

∴∠AED=∠ADE,

ABAC

∴∠B=∠C,

∴∠B+BAD=∠EDC+C+CDE

即∠BAD2CDE,∠122

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)y=﹣2x經(jīng)過(guò)點(diǎn)P(﹣2,a),點(diǎn)P關(guān)于y軸的對(duì)稱(chēng)點(diǎn)P′在反比例函數(shù)yk≠0)的圖象上.

1)求反比例函數(shù)的解析式;

2)直接寫(xiě)出當(dāng)y4時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)軸交于點(diǎn),與軸交于點(diǎn),拋物線(xiàn)的對(duì)稱(chēng)軸是且經(jīng)過(guò)、兩點(diǎn),與軸的另一交點(diǎn)為點(diǎn),連結(jié)

(1)填空:點(diǎn)、點(diǎn)和點(diǎn)的坐標(biāo)分別為________,________,________;

(2)求證:;

(3)求拋物線(xiàn)解析式;

(4)若點(diǎn)為直線(xiàn)上方的拋物線(xiàn)上的一點(diǎn),連結(jié),求面積的最大值,并求出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是根據(jù)九年級(jí)某班50名同學(xué)一周的鍛煉情況繪制的條形統(tǒng)計(jì)圖,下面關(guān)于該班50名同學(xué)一周鍛煉時(shí)間的說(shuō)法錯(cuò)誤的是( 。

A.平均數(shù)是6

B.中位數(shù)是6.5

C.眾數(shù)是7

D.平均每周鍛煉超過(guò)6小時(shí)的人數(shù)占該班人數(shù)的一半

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON30°,點(diǎn)A1、A2、A3、……在射線(xiàn)ON上,點(diǎn)B1B2、B3……在射線(xiàn)OM上,A1B1A2A2B2A3、A3B3A4,……均為等邊三角形,若OA11,則A2019B2019A2020的邊長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形方格紙中,我們把頂點(diǎn)都在格點(diǎn)上的三角形稱(chēng)為格點(diǎn)三角形,如圖,△ABC是一個(gè)格點(diǎn)三角形,點(diǎn)A的坐標(biāo)為(﹣1,2).

(1)點(diǎn)B的坐標(biāo)為   ,ABC的面積為   ;

(2)在所給的方格紙中,請(qǐng)你以原點(diǎn)O為位似中心,將△ABC放大為原來(lái)的2倍,放大后點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為A1、B1,點(diǎn)B1在第一象限;

(3)在(2)中,若P(a,b)為線(xiàn)段AC上的任一點(diǎn),則放大后點(diǎn)P的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,C的半徑為r,P是與圓心C不重合的點(diǎn),點(diǎn)P關(guān)于C的反稱(chēng)點(diǎn)的定義如下:若在射線(xiàn)CP上存在一點(diǎn)P′,滿(mǎn)足CP+CP′=2r,則稱(chēng)P′為點(diǎn)P關(guān)于C的反稱(chēng)點(diǎn),如圖為點(diǎn)P及其關(guān)于C的反稱(chēng)點(diǎn)P′的示意圖.

特別地,當(dāng)點(diǎn)P′與圓心C重合時(shí),規(guī)定CP′=0.

(1)當(dāng)O的半徑為1時(shí).

分別判斷點(diǎn)M(2,1),N(,0),T1 )關(guān)于O的反稱(chēng)點(diǎn)是否存在?若存在,求其坐標(biāo);

點(diǎn)P在直線(xiàn)y=﹣x+2上,若點(diǎn)P關(guān)于O的反稱(chēng)點(diǎn)P′存在,且點(diǎn)P′不在x軸上,求點(diǎn)P的橫坐標(biāo)的取值范圍;

2C的圓心在x軸上,半徑為1,直線(xiàn)y=﹣x+2與x軸、y軸分別交于點(diǎn)A,B,若線(xiàn)段AB上存在點(diǎn)P,使得點(diǎn)P關(guān)于C的反稱(chēng)點(diǎn)P′在C的內(nèi)部,求圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A在拋物線(xiàn)yx2bxcb>0)上,且A(1,-1),

(1)若bc=4,bc的值;

(2)若該拋物線(xiàn)與y軸交于點(diǎn)B其對(duì)稱(chēng)軸與x軸交于點(diǎn)C,則命題“對(duì)于任意的一個(gè)k0<k1),都存在b,使得OCk·OB.”是否正確?若正確,請(qǐng)證明;若不正確,請(qǐng)舉反例;

(3)將該拋物線(xiàn)平移,平移后的拋物線(xiàn)仍經(jīng)過(guò)(1,-1),點(diǎn)A的對(duì)應(yīng)點(diǎn)A1

(1-m,2b-1).當(dāng)m時(shí),求平移后拋物線(xiàn)的頂點(diǎn)所能達(dá)到的最高點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠按用戶(hù)的月需求量()完成一種產(chǎn)品的生產(chǎn),其中.每件的售價(jià)為18萬(wàn)元,每件的成本(萬(wàn)元)是基礎(chǔ)價(jià)與浮動(dòng)價(jià)的和,其中基礎(chǔ)價(jià)保持不變,浮動(dòng)價(jià)與月需求量()成反比.經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),月需求量與月份(為整數(shù),)符合關(guān)系式(為常數(shù)),且得到了表中的數(shù)據(jù).

月份()

1

2

成本(萬(wàn)元/件)

11

12

需求量(件/月)

120

100

(1)滿(mǎn)足的關(guān)系式,請(qǐng)說(shuō)明一件產(chǎn)品的利潤(rùn)能否是12萬(wàn)元;

(2),并推斷是否存在某個(gè)月既無(wú)盈利也不虧損;

(3)在這一年12個(gè)月中,若第個(gè)月和第個(gè)月的利潤(rùn)相差最大,求

查看答案和解析>>

同步練習(xí)冊(cè)答案