【題目】數(shù)軸上A 點(diǎn)對應(yīng)的數(shù)為﹣5,B 點(diǎn)在A 點(diǎn)右邊,電子螞蟻甲、乙在B分別以2個(gè)單位/秒、1個(gè)單位/秒的速度向左運(yùn)動(dòng),電子螞蟻丙在A 以3個(gè)單位/秒的速度向右運(yùn)動(dòng).
(1)若電子螞蟻丙經(jīng)過5秒運(yùn)動(dòng)到C 點(diǎn),求C 點(diǎn)表示的數(shù);
(2)若它們同時(shí)出發(fā),若丙在遇到甲后1秒遇到乙,求B 點(diǎn)表示的數(shù);
(3)在(2)的條件下,設(shè)它們同時(shí)出發(fā)的時(shí)間為t 秒,是否存在t的值,使丙到乙的距離是丙到甲的距離的2倍?若存在,求出t 值;若不存在,說明理由.
【答案】(1)10;(2)15;(3) : 或
【解析】
試題(1)丙運(yùn)動(dòng)到c點(diǎn)表示的數(shù)是;(2)乙丙相遇的時(shí)間比甲丙相遇用的時(shí)間多1秒,所以設(shè)B點(diǎn)表示的數(shù)為x,AB的距離是x+5,,可以得到,求得x=15;(3)由(2)得AB 距離是20,可以求出甲丙,乙丙相遇所需要的時(shí)間,分別是4秒,5秒。所以使丙到乙的距離是丙到甲的距離的2倍,可以是在未和甲乙相遇時(shí),即當(dāng)時(shí);也可以是僅和甲相遇未和乙相遇的情形,即當(dāng)時(shí);還可以是和甲乙均相遇以后的情形,即當(dāng)時(shí)。對此三種情況進(jìn)行分類討論看每種情況是否成立。
(1)由題知:C: 即C點(diǎn)表示的數(shù)為10
(2)設(shè)B表示的數(shù)為x,則B到A的距離為 ,點(diǎn)B在點(diǎn)A的右邊,
故
由題得: ,即
(3)由(2)得知,AB距離為20,丙甲相遇需要4秒,丙乙相遇需要5秒
①當(dāng)時(shí),即丙未與甲、乙任意一點(diǎn)相遇前,丙乙的距離為,
丙甲的距離為,得
即 成立
②當(dāng)時(shí),即丙與甲相遇后,且丙未與乙相遇前,丙乙的距離為
,丙甲的距離為,得
即, 成立
③當(dāng)時(shí),即丙與甲、乙相遇以后,丙乙的距離為,丙甲的距
離為,得 即 不成立
綜上所述: 或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】結(jié)算下列各題
(1)計(jì)算:| ﹣2|+( )﹣1﹣(π﹣3.14)0﹣ ;
(2)計(jì)算:[xy(3x﹣2)﹣y(x2﹣2x)]÷x2y.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB分別交y軸、x軸于A、B兩點(diǎn),OA=2,tan∠ABO= ,拋物線y=﹣x2+bx+c過A、B兩點(diǎn).
(1)求直線AB和這個(gè)拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,求△ABD的面積;
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N.求當(dāng)t取何值時(shí),MN的長度l有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種新運(yùn)算“⊕”:a⊕b=2a﹣ab,比如1⊕(﹣3)=2×1﹣1×(﹣3)=5
(1)求(﹣2)⊕3的值;
(2)若(﹣3)⊕x=(x+1)⊕5,求x的值;
(3)若x⊕1=2(1⊕y),求代數(shù)式x+y+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形紙片ABCD中,AB=6 cm,BC=8 cm,點(diǎn)E是BC邊上一點(diǎn),連接AE,并將△AEB沿AE折疊,得到△AEB′,以C,E,B′為頂點(diǎn)的三角形是直角三角形時(shí),BE的長為____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】臨海市初中第三教研區(qū)為了豐富學(xué)生課余活動(dòng),組織同學(xué)開展每周一次的社團(tuán)活動(dòng),活動(dòng)內(nèi)容有足球、跳繩、跳舞、籃球、象棋共5項(xiàng),為方便組織,規(guī)定每位同學(xué)只能報(bào)一項(xiàng)活動(dòng),根據(jù)報(bào)名繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖,解答下列問題:
(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)寫出扇形統(tǒng)計(jì)圖中的m和n的值;
(3)瑤瑤和欣欣兩名同學(xué)對足球、籃球、象棋三項(xiàng)活動(dòng)都很感興趣,決定從三項(xiàng)活動(dòng)中隨機(jī)抽取一項(xiàng)參加,利用樹狀圖或列表表示所有可能結(jié)果,并求出兩人參加同一項(xiàng)目的概率;
(4)由于場地限制,參加足球活動(dòng)的學(xué)生人數(shù)不能超過參加其余活動(dòng)學(xué)生人數(shù)的 ,那么至少幾位同學(xué)需要從參加足球活動(dòng)調(diào)整到參加其余活動(dòng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花木公司在20天內(nèi)銷售一批馬蹄蓮.其中,該公司的鮮花批發(fā)部日銷售量y1(萬朵)與時(shí)間x(x為整數(shù),單位:天)部分對應(yīng)值如下表所示.
時(shí)間x(天) | 0 | 4 | 8 | 12 | 16 | 20 |
銷量y1(萬朵) | 0 | 16 | 24 | 24 | 16 | 0 |
另一部分鮮花在淘寶網(wǎng)銷售,網(wǎng)上銷售日銷售量y2(萬朵)與時(shí)間x(x為整數(shù),單位:天) 關(guān)系如圖所示.
(1)請你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與x的變化規(guī)律,寫出y1與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)觀察馬蹄蓮網(wǎng)上銷售量y2與時(shí)間x的變化規(guī)律,請你設(shè)想商家采用了何種銷售策略使得銷售量發(fā)生了變化,并寫出銷售量y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)設(shè)該花木公司日銷售總量為y萬朵,寫出y與時(shí)間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時(shí)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE是過點(diǎn)A的直線,BD⊥DE于D,CE⊥DE于點(diǎn)E;
(1)若B、C在DE的同側(cè)(如圖所示)且AD=CE.求證:AB⊥AC;
(2)若B、C在DE的兩側(cè)(如圖所示),其他條件不變,AB與AC仍垂直嗎?若是請給出證明;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的兩條高線BD,CE相交于點(diǎn)F,已知∠ABC=60°,AB=10,CF=EF,則△ABC的面積為( )
A.20
B.25
C.30
D.40
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com