【題目】如圖,在Rt△ABC中,∠ABC=90°, AB=BC=.將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,得到△MNC,連接BM,BN,求BM的長.(提示: 連接BN,先證:AC⊥BM.再利用含30°的直角三角形的性質(zhì)解答)
【答案】BM的長為.
【解析】解析:連接BN,設(shè)CA與BM相交于點(diǎn)D(如圖所示),
由題意易得△BCN為等邊三角形,.......................(1分)
所以BN=NC=NM,∠BNM=60°+90°=150°,................(3分)
所以∠NBM=∠NMB=15°,...............................................(4分)
所以∠CBM=60°-15°=45°................................................(5分)
∠CMB=45°-15°=30°................................................(6分)
又因?yàn)椤螧CA=45°,所以∠CDB=90°........................................(7分)
所以△CBD為等腰直角三角形,△CDM為含30°角的直角三角形,
根據(jù)BC=,可求得BD=CD=1,DM=, .............................(9分)
所以 BM =1+ ................................................(10分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把多項(xiàng)式3a2﹣9ab分解因式,正確的是( )
A. 3(a2﹣3ab) B. 3a(a﹣3b) C. a(3a﹣9b) D. a(9b﹣3a)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)M (﹣5,3)關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)是( )
A.(﹣5,﹣3)
B.(5,﹣3)
C.(5,3)
D.(﹣5,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列因式分解中,是利用提公因式法分解的是( 。
A. a2﹣b2=(a+b)(a﹣b) B. a2﹣2ab+b2=(a﹣b)2
C. ab+ac=a(b+c) D. a2+2ab+b2=(a+b)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若x表示一個(gè)兩位數(shù),y表示一個(gè)三位數(shù),把x放在y的左邊,組成的五位數(shù)可表示為( )
A. x +y B. 100x+y C. 100x+1000 y D. 1000x+ y
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形有兩條邊長分別為5和10,則這個(gè)等腰三角形的周長為( )
A. 15B. 20C. 25或20D. 25
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com