【題目】我國(guó)南宋時(shí)期杰出的數(shù)學(xué)家楊輝是錢塘人,下面的圖表是他在《詳解九章算術(shù)》中記載的“楊輝三角”.此圖揭示了 (為非負(fù)整數(shù))的展開(kāi)式的項(xiàng)數(shù)及各項(xiàng)系數(shù)的有關(guān)規(guī)律.

(1)請(qǐng)仔細(xì)觀察,填出(a+b)4的展開(kāi)式中所缺的系數(shù).(a+b)4=a4+4a3b+a2b2+4ab2+b4
(2)此規(guī)律還可以解決實(shí)際問(wèn)題:假如今天是星期三,再過(guò)7天還是星期三,那么再過(guò) 天是星期

【答案】
(1)6
(2)四
【解析】(1)(a+b)4=a4+4a3b+6a2b2+4ab2+b4 ,
( 2 )∵814=(7+1)14=714+14×713+91×712+…+14×7+1,
∴814除以7的余數(shù)為1,
∴假如今天是星期三,那么再過(guò)814天是星期四.
(1)根據(jù)楊輝三角,下一行的系數(shù)是上一行相鄰兩系數(shù)的和,然后寫(xiě)出各項(xiàng)的系數(shù)即可;
(2)根據(jù)814=(7+1)14=714+14×713+91×712+…+14×7+1可知814除以7的余數(shù)為1,從而可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(m1)x|m|2 019是關(guān)于x的一元一次不等式,則m_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是( 。
①AD是∠BAC的平分線;
②∠ADC=60°;
③點(diǎn)D在AB的中垂線上;
④BD=2CD.

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

我們知道,四邊形具有不穩(wěn)定性,容易變形,如圖1,一個(gè)矩形發(fā)生變形后成為一個(gè)平行四邊形,設(shè)這個(gè)平行四邊形相鄰兩個(gè)內(nèi)角中較小的一個(gè)內(nèi)角為α,我們把的值叫做這個(gè)平行四邊形的變形度.

(1)若矩形發(fā)生變形后的平行四邊形有一個(gè)內(nèi)角是120度,則這個(gè)平行四邊形的變形度是

猜想證明:

(2)設(shè)矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1,S2,之間的數(shù)量關(guān)系,并說(shuō)明理由;

拓展探究:

(3)如圖2,在矩形ABCD中,E是AD邊上的一點(diǎn),且=AEAD,這個(gè)矩形發(fā)生變形后為平行四邊形A1B1C1D1,E1為E的對(duì)應(yīng)點(diǎn),連接B1E1,B1D1,若矩形ABCD的面積為(m>0),平行四邊形A1B1C1D1的面積為(m>0),試求∠A1E1B1+∠A1D1B1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】做一個(gè)數(shù)字游戲:

第一步:取一個(gè)自然數(shù)n1=5,計(jì)算n12+1a1;

第二步:算出a1的各位數(shù)字之和得n2,計(jì)算n22+1a2;

第三步:算出a2的各位數(shù)字之和得n3,計(jì)算n32+1a3;

……,

以此類推,則a2018=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=90°.
(1)用直尺和圓規(guī)作出BC的垂直平分線(保留作圖痕跡,不要求寫(xiě)作法);
(2)BC的垂直平分線與AC相交于D,連結(jié)BD,若∠C=30°,則∠ABD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值: ,其中 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分線.若在邊AB上截取BE=BC,連接DE,則圖中等腰三角形共有(
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)閱讀材料:

教材中的問(wèn)題,如圖1,把5個(gè)邊長(zhǎng)為1的小正方形組成的十字形紙板剪開(kāi),使剪成的若干塊能夠拼成一個(gè)大正方形,小明的思考:因?yàn)榧羝辞昂蟮膱D形面積相等,且5個(gè)小正方形的總面積為5,所以拼成的大正方形邊長(zhǎng)為 ,故沿虛線AB剪開(kāi)可拼成大正方形的一邊,請(qǐng)?jiān)趫D1中用虛線補(bǔ)全剪拼示意圖.

(2)類比解決:

如圖2,已知邊長(zhǎng)為2的正三角形紙板ABC,沿中位線DE剪掉ADE,請(qǐng)把紙板剩下的部分DBCE剪開(kāi),使剪成的若干塊能夠拼成一個(gè)新的正三角形.

①拼成的正三角形邊長(zhǎng)為 ;

②在圖2中用虛線畫(huà)出一種剪拼示意圖.

(3)靈活運(yùn)用:

如圖3,把一邊長(zhǎng)為60cm的正方形彩紙剪開(kāi),用剪成的若干塊拼成一個(gè)軸對(duì)稱的風(fēng)箏,其中BCD=90°,延長(zhǎng)DC、BC分別與AB、AD交于點(diǎn)E、F,點(diǎn)E、F分別為AB、AD的中點(diǎn),在線段AC和EF處用輕質(zhì)鋼絲做成十字形風(fēng)箏龍骨,在圖3的正方形中畫(huà)出一種剪拼示意圖,并求出相應(yīng)輕質(zhì)鋼絲的總長(zhǎng)度.(說(shuō)明:題中的拼接都是不重疊無(wú)縫隙無(wú)剩余)

查看答案和解析>>

同步練習(xí)冊(cè)答案