【題目】如圖,∠AOB=45°,點M,N在邊OA上,點P是邊OB上的點.
(1)利用直尺和圓規(guī)在圖1確定點P,使得PM=PN;
(2)設(shè)OM=x,ON=x+4,
①若x=0時,使P、M、N構(gòu)成等腰三角形的點P有 個;
②若使P、M、N構(gòu)成等腰三角形的點P恰好有三個,則x的值是____________.
【答案】(1)見解析;(2)①3;②:x=0或x=4﹣4或4<x<4;
【解析】
(1)分別以M、N為圓心,以大于MN為半徑作弧,兩弧相交與兩點,過兩弧交
點的直線就是MN的垂直平分線;
(2)①分為PM=PN,MP=MN,NP=NM三種情況進行判斷即可;②如圖3,構(gòu)建腰長為4
的等腰直角△OMC,和半徑為4的⊙M,發(fā)現(xiàn)M在點D的位置時,滿足條件;如圖4,根
據(jù)等腰三角形三種情況的畫法:分別以M、N為圓心,以MN為半徑畫弧,與OB的交點就
是滿足條件的點P,再以MN為底邊的等腰三角形,通過畫圖發(fā)現(xiàn),無論x取何值,以MN
為底邊的等腰三角形都存在一個,所以只要滿足以MN為腰的三角形有兩個即可.
(1)如圖所示:
(2)①如圖所示:
故答案為:3.
②如圖3,以M為圓心,以4為半徑畫圓,當(dāng)⊙M與OB相切時,設(shè)切點為C,⊙M與OA交于D,
∴MC⊥OB,
∵∠AOB=45°,
∴△MCO是等腰直角三角形,
∴MC=OC=4,
∴
當(dāng)M與D重合時,即時,同理可知:點P恰好有三個;
如圖4,取OM=4,以M為圓心,以OM為半徑畫圓.
則⊙M與OB除了O外只有一個交點,此時x=4,即以∠PMN為頂角,MN為腰,符合條件的點P有一個,以N圓心,以MN為半徑畫圓,與直線OB相離,說明此時以∠PNM為頂角,以MN為腰,符合條件的點P不存在,還有一個是以NM為底邊的符合條件的點P;
點M沿OA運動,到M1時,發(fā)現(xiàn)⊙M1與直線OB有一個交點;
∴當(dāng)時,圓M在移動過程中,則會與OB除了O外有兩個交點,滿足點P恰好有三個;
綜上所述,若使點P,M,N構(gòu)成等腰三角形的點P恰好有三個,則x的值是:x=0或或
故答案為:x=0或或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄭州市自2019年12月1日起推行垃圾分類,廣大市民對垃圾桶的需求劇增.為滿足市場需求,某超市花了7900元購進大小不同的兩種垃圾桶共800個,其中,大桶和小桶的進價及售價如表所示.
大桶 | 小桶 | |
進價(元/個) | 18 | 5 |
售價(元/個) | 20 | 8 |
(1)該超市購進大桶和小桶各多少個?
(2)當(dāng)小桶售出了300個后,商家決定將剩下的小桶的售價降低1元銷售,并把其中一定數(shù)量的小桶作為贈品,在顧客購買大桶時,買一贈一(買一個大桶送一個小桶),送完即止.
請問:超市要使這批垃圾桶售完后獲得的利潤為1550元,那么小桶作為贈品送出多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細(xì)閱讀下面例題,解答問題:
例題:已知二次三項式有一個因式是,求另一個因式以及的值.
解:設(shè)另一個因式為,得,
則,
,
解得,,
∴另一個因式為,的值為.
仿照例題方法解答:
(1)若二次三項式的一個因式為,求另一個因式;
(2)若二次三項式有一個因式是,求另一個因式以及的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個工程隊共同參與一項筑路工程,甲隊單獨施工3個月,這時增加了乙隊,兩隊又共同工作了2個月,總工程全部完成,已知甲隊單獨完成全部工程比乙隊單獨完成全部工程多用2個月,設(shè)甲隊單獨完成全部工程需個月,則根據(jù)題意可列方程中錯誤的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展了“手機伴我健康行”主題活動.他們隨機抽取部分學(xué)生進行“手機使用目的”和“每周使用手機時間”的問卷調(diào)查,并繪制成如圖①②的統(tǒng)計圖。已知“查資料”人人數(shù)是40人。
請你根據(jù)以上信息解答以下問題
(1)在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的圓心角度數(shù)是_______________。
(2)補全條形統(tǒng)計圖
(3)該校共有學(xué)生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車開往距離出發(fā)地的目的地,出發(fā)后第一小時內(nèi)按原計劃的速度勻速行駛,一小時后以原來速度的1.5倍勻速行駛,并比原計劃提前到達(dá)目的地,設(shè)前一個小時的行駛速度為
(1)直接用的式子表示提速后走完剩余路程的時間為
(2)求汽車實際走完全程所花的時間.
(3)若汽車按原路返回,司機準(zhǔn)備一半路程以的速度行駛,另一半路程以的速度行駛(),朋友提醒他一半時間以的速度行駛,另一半時間以的速度行駛更快,你覺得誰的方案更快?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的反比例函數(shù),且當(dāng)x=2時,y=﹣3,
(1)求y與x之間的函數(shù)關(guān)系式;
(2)畫出這個函數(shù)的圖象;
(3)試判斷點P(﹣2,3)是否在這個函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN與∠AOB互補,若∠MPN在繞點P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結(jié)論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長不變,其中正確的個數(shù)為( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2011山東濟南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標(biāo)為(0,8),點C的坐標(biāo)為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式,并求出m為何值時,S取得最大值;
②當(dāng)S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com