【題目】已知⊙O的半徑為2,點(diǎn)P是⊙O內(nèi)一點(diǎn),且OP= ,過P作互相垂直的兩條弦AC、BD,則四邊形ABCD面積的最大值為( )
A.4
B.5
C.6
D.7
【答案】B
【解析】解:如圖:連接OA、OD,作OE⊥AC于E,OF⊥BD于F,
∵AC⊥BD,
∴四邊形OEPF為矩形,
∵OA=OD=2,OP= ,
設(shè)OE為x(x>0),
根據(jù)勾股定理得,OF=EP= = ,
在Rt△AOE中,AE= =
∴AC=2AE=2 ,
同理得,BD=2DF=2 =2 ,
又∵任意對(duì)角線互相垂直的四邊形的面積等于對(duì)角線乘積的 ,
∴S四邊形ABCD= AC×BD= ×2 ×2 =2 =2
當(dāng)x2= 即:x= 時(shí),四邊形ABCD的面積最大,等于2 =5.
答案為:B.
作出弦心距,根據(jù)S四邊形ABCD=對(duì)角線乘積的一半,列出函數(shù)關(guān)系式,配成頂點(diǎn)式,求出最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的周長(zhǎng)是10,底邊長(zhǎng)y是腰長(zhǎng)x的函數(shù),則下列圖象中,能正確反映y與x之間函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列一段文字:在直角坐標(biāo)系中,已知兩點(diǎn)的坐標(biāo)是M(x1,y1),N(x2,y2)),M,N兩點(diǎn)之間的距離可以用公式MN=計(jì)算.解答下列問題:
(1)若點(diǎn)P(2,4),Q(﹣3,﹣8),求P,Q兩點(diǎn)間的距離;
(2)若點(diǎn)A(1,2),B(4,﹣2),點(diǎn)O是坐標(biāo)原點(diǎn),判斷△AOB是什么三角形,并說明理由.
(3)已知點(diǎn)A(5,5),B(-4,7),點(diǎn)P在x軸上,且要使PA+PB的和最小,求PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.平移不改變圖形的形狀和大小,而旋轉(zhuǎn)則改變圖形的形狀和大小
B.平移和旋轉(zhuǎn)的共同點(diǎn)是改變了圖形的位置,而圖形的形狀大小沒有變化
C.圖形可以向某方向平移一定距離,也可以向某方向旋轉(zhuǎn)一定距離
D.在平移和旋轉(zhuǎn)圖形中,對(duì)應(yīng)角相等,對(duì)應(yīng)線段相等且平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了綠化校園,計(jì)劃購買一批榕樹和香樟樹,經(jīng)市場(chǎng)調(diào)查,榕樹的單價(jià)比香樟樹少20元,購買3棵榕樹和2棵香樟樹共需340元.
(1)榕樹和香樟樹的單價(jià)各是多少?
(2)根據(jù)學(xué)校實(shí)際情況,需購買兩種樹苗共150棵,總費(fèi)用不超過10840元,且購買香樟樹的棵數(shù)不少于榕樹的1.5倍,請(qǐng)你算算該校本次購買榕樹和香樟樹共有哪幾種方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,點(diǎn)A(o,m),點(diǎn)B(n,0),m, n滿足.
(1)求A,B的坐標(biāo).
(2)如圖1, E為第二象限內(nèi)直線AB上的一點(diǎn),且滿足,求點(diǎn)E的橫坐標(biāo).
(3)如圖2,平移線段BA至OC, B與O是對(duì)應(yīng)點(diǎn),A與C是對(duì)應(yīng)點(diǎn),連接AC, E為BA的延長(zhǎng)線上一點(diǎn),連接EO, OF平分∠COE, AF平分∠EAC, OF交AF于點(diǎn)F,若∠ABO+∠OEB=α,請(qǐng)?jiān)趫D2中將圖形補(bǔ)充完整,并求∠F (用含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)均為1)中選取9個(gè)格點(diǎn)(格線的交點(diǎn)稱為格點(diǎn)),如果以A為圓心,r為半徑畫圓,選取的格點(diǎn)中除點(diǎn)A外恰好有3個(gè)在圓內(nèi),則r的取值范圍為( )
A.2 <r<
B. <r≤3
C. <r<5
D.5<r<
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,∠EBF=2∠ABE,∠EDF=2∠CDE,則∠E與∠F之間滿足的數(shù)量關(guān)系是( )
A. ∠E=∠FB. ∠E+∠F=180°
C. 3∠E+∠F=360°D. 2∠E-∠F=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,.
(1)如圖1,點(diǎn)為線段的中點(diǎn),連接,.若,求線段的長(zhǎng).
(2)如圖2,為線段上一點(diǎn)(不與,重合),以為邊向上構(gòu)造等邊三角形,線段與交于點(diǎn),連接,,為線段的中點(diǎn).連接,判斷與的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)在(2)的條件下,若,請(qǐng)你直接寫出的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com