【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B(3,0),C(0,3)三點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)M是線段BC上的點(diǎn)(不與B、C重合),過M作NM∥y軸交拋物線于N,若點(diǎn)M的橫坐標(biāo)為m,請用含m的代數(shù)式表示MN的長;
(3)在(2)的條件下,連接NB,NC,是否存在點(diǎn)m,使△BNC的面積最大?若存在,求m的值和△BNC的面積;若不存在,說明理由
【答案】(1)拋物線的解析式:y=﹣x2+2x+3;(2)MN=﹣m2+3m(0<m<3);(3)存在,當(dāng)m=時,△BNC的面積最大為 .
【解析】
(1)已知了拋物線上的三個點(diǎn)的坐標(biāo),直接利用待定系數(shù)法即可求出拋物線的解析式.
(2)先利用待定系數(shù)法求出直線BC的解析式,已知點(diǎn)M的橫坐標(biāo),代入直線BC、拋物線的解析式中,可得到M、N點(diǎn)的坐標(biāo),N、M縱坐標(biāo)的差的絕對值即為MN的長.
(3)設(shè)MN交x軸于D,那么的面積可表示為:,MN的表達(dá)式在(2)中已求得,OB的長易知,由此列出關(guān)于 的函數(shù)關(guān)系式,即可得出結(jié)論.
解:
(1)設(shè)
則
,,,
,
(2)設(shè)直線BC的解析式為
則,
,,
∴,
已知點(diǎn)M的橫坐標(biāo)為,
∴,
,
(3)
如圖可知:,
=
∴當(dāng)時,的面積最大,最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中BC=2,以 BC 的中點(diǎn) O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點(diǎn),的長為( )
A.B.C.πD.2π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售水果時,將A、B、C三種水果采用甲、乙、丙三種方式搭配裝箱進(jìn)行銷售,毎箱的成本分別為箱中A、B、C三種水果的成本之和,箱子成本忽略不計(jì).甲種方式每箱分別裝A、B、C三種水果6kg、3kg、1kg,乙種方式每分別裳A、B、C三種水果2kg、6kg、2kg,甲每箱的總成本是每千克A成本的15倍,每箱甲的銷售利潤率為20%,每箱甲比每箱乙的售價(jià)低25%;丙每箱在成本上提高40%標(biāo)價(jià)后打八折銷售獲利為每千克A成本的1.2倍,當(dāng)銷售甲、乙、丙三種方式的水果數(shù)量之比為2:1:5時,則銷售的總利潤率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,,對角線,相交于點(diǎn),點(diǎn),分別從,兩點(diǎn)同時出發(fā),以的速度沿,運(yùn)動,到點(diǎn),時停止運(yùn)動,設(shè)運(yùn)動時間為,的面積為,則與的函數(shù)關(guān)系可用圖象表示為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=BC=4,把△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)45°得到△ADE,過點(diǎn)C作CF⊥AE于F,DE交CF于G,則四邊形ADGF的周長是( )
A.8B.4+4C.8+D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個二次函數(shù)的圖象的頂點(diǎn)、開口方向都相同,則稱這兩個二次函數(shù)為“同類二次函數(shù)”.
(1)請直接寫出兩個為“同類二次函數(shù)”的函數(shù);
(2)已知關(guān)于x的二次函數(shù)y1=(x+2)2﹣3和y2=ax2+bx﹣1,若y1+y2與y1為“同類二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求出當(dāng)﹣3≤x≤0時,y2的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑為1,DE是⊙O的直徑,過點(diǎn)D作⊙O的切線AD,C是AD的中點(diǎn),AE交⊙O于B點(diǎn),四邊形BCOE是平行四邊形.
(1)求AD的長;
(2)BC是⊙O的切線嗎?若是,給出證明;若不是,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是 ;
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com