【題目】教材呈現(xiàn):下圖是華師版八年級下冊數(shù)學(xué)教材第11頁的部分內(nèi)容.
例1,如圖,在菱形中,,試求的大小,并說明是等邊三角形
問題解決:請結(jié)合圖(1),寫出例1的完整解答過程;
問題探究:在菱形中,對角線相交于點(diǎn),過點(diǎn)D作交BC的延長線于點(diǎn)E.
(1)如圖2,連接OE,則OE的長為____________;
(2)如圖3,若點(diǎn)P是對角線BD上一動點(diǎn),連結(jié),則的最小值為____________.
【答案】問題解決:見解析;問題探究:(1);(2)
【解析】
問題解決:根據(jù)菱形的性質(zhì)證明∠ABC=60°即可得證;
問題探究:(1)證明四邊形ACED是邊長為4的菱形,可得三角形ODE為直角三角形,利用勾股定理即可算出OE的長度;
(2)根據(jù)將軍飲馬問題,可知的最小值即為AE的長度;
問題解決:
因?yàn)樗倪呅?/span>ABCD是菱形,所以,
因?yàn)?/span>
所以
因?yàn)樗倪呅?/span>ABCD是菱形,
所以是等邊三角形;
問題探究:
(1)因?yàn)樗倪呅?/span>ABCD是菱形,所以,
又因?yàn)?/span>,所以四邊形ACED為平行四邊形,由(1)可知AB=AC=AD,所以四邊形ACED為菱形,且∠ADE=120°,DE=4,又由菱形的性質(zhì)可知,∠ADO=30°,AC⊥BD,所以,∠ODE=120°-30°=90°,利用勾股定理可得
(2)根據(jù)將軍飲馬問題,C點(diǎn)關(guān)于BD的對稱點(diǎn)為A點(diǎn),連接AE,AE即為的最小值,過A作BE的垂線交BE于F,如下圖,因?yàn)槿切?/span>ABC為等邊三角形,所以,FE=6,根據(jù)勾股定理可知
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx+c與x軸交于點(diǎn)A(4,﹣5).
(1)如圖,過點(diǎn)A分別向x軸、y軸作垂線,垂足分別為B、C,得到矩形ABOC,且拋物線經(jīng)過點(diǎn)C.
①求拋物線的解析式.
②將拋物線沿直線x=m(2>m>0)翻折,分別交線段OB、AC于D,E兩點(diǎn).若直線DE剛好平分矩形ABOC的面積,求m的值.
(2)將拋物線旋轉(zhuǎn)180°,使點(diǎn)A的對應(yīng)點(diǎn)為A1(m﹣2,n﹣4),其中m≤2.若旋轉(zhuǎn)后的拋物線仍然經(jīng)過點(diǎn)A,求旋轉(zhuǎn)后的拋物線頂點(diǎn)所能達(dá)到最低點(diǎn)時的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,AC是⊙O的切線,∠ABC=52°,BC交⊙O于點(diǎn)D,E是AB上一點(diǎn),延長DE交⊙O于點(diǎn)F.
(Ⅰ)如圖①,連接BF,求∠C和∠DFB的大。
(Ⅱ)如圖②,當(dāng)DB=DE時,求∠OFD的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形ABCD中,AB=6,BC=9,點(diǎn)E是BC邊上一動點(diǎn),連接AE、DE ,作△ECD的外接⊙O,交AD于點(diǎn)F,交AE于點(diǎn)G,連接FG.
(1)求證△AFG∽△AED;
(2)當(dāng)BE的長為 時,△AFG為等腰三角形;
(3)如圖②,若BE=1,求證:AB與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級數(shù)學(xué)興趣小組在研究等腰直角三角形與圖形變換時,作了如下研究:在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動點(diǎn)(點(diǎn)D不與B,C重合),以AD為腰作等腰直角三角形DAF,使∠DAF=90°,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時,
①CF與BC的位置關(guān)系為 ;
②CF,DC,BC之間的數(shù)量關(guān)系為 (直接寫出結(jié)論);
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長線上時,(1)中的①、②結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長線上時,將△DAF沿線段DF翻折,使點(diǎn)A與點(diǎn)E重合,連接CE,若已知4CD=BC,AC=2,請求出線段CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B是反比例函數(shù)(k≠0)圖象上的兩點(diǎn),延長線段AB交y軸于點(diǎn)C,且B為線段AC的中點(diǎn),過點(diǎn)A作AD⊥x軸于點(diǎn)D,E為線段OD的三等分點(diǎn),且OE<DE.連接AE,BE.若S△ABE=7,則k的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,矩形的頂點(diǎn)(1,0),(0,2),點(diǎn)在第一象限,∥軸,若函數(shù)=的圖象經(jīng)過矩形的對角線的交點(diǎn),則的值為( )
A.4B.5C.8D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為雙曲線上的一點(diǎn),過點(diǎn)作軸、軸的垂線,分別交直線于點(diǎn)、兩點(diǎn)(點(diǎn)在點(diǎn)下方.若直線與軸交于點(diǎn),與軸相交于點(diǎn),則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查廣西北部灣四市市民上班時最常用的交通工具的情況,隨機(jī)抽取了四市部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“A:自行車,B:電動車,C:公交車,D:家庭汽車,E:其他”五個選項(xiàng)中選擇最常用的一項(xiàng),將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請結(jié)合統(tǒng)計(jì)圖回答下列問題:
(1)在這次調(diào)查中,一共調(diào)查了 名市民,扇形統(tǒng)計(jì)圖中,C組對應(yīng)的扇形圓心角是 °;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若甲、乙兩人上班時從A、B、C、D四種交通工具中隨機(jī)選擇一種,則甲、乙兩人恰好選擇同一種交通工具上班的概率是多少?請用畫樹狀圖或列表法求解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com