【題目】某超市以20元/件的價(jià)格購(gòu)進(jìn)一批商品,根據(jù)前期銷售情況,每天銷售量y(件)與該商品的銷售價(jià)x(元)之間的函數(shù)圖象如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式.
(2)如果將該商品的銷售價(jià)定為30元/件,不考慮其它因素,求該超市每天銷售這種商品所能獲得的利潤(rùn).
(3)直接寫出能使該超市獲得最大利潤(rùn)的商品銷售價(jià)
【答案】(1);(2)該超市每天銷售這種商品所能獲得的利潤(rùn)為400元.(3)35元.
【解析】分析:(1)用待定系數(shù)法直接求一次函數(shù)解析式即可.
(2)把代入(1)中的解析式即可.
(3)令利潤(rùn)為W, 則配方即可求出該超市獲得最大利潤(rùn)的商品銷售價(jià).
詳解:(1)設(shè)所求函數(shù)關(guān)系式為().
將點(diǎn)(20,60),(40,20)代入,
得 解得
所以y與x之間的函數(shù)關(guān)系式為.
(2)當(dāng)時(shí),.
所以(元).
所以該超市每天銷售這種商品所能獲得的利潤(rùn)為400元.
(3)令利潤(rùn)為W,
當(dāng)銷售價(jià)為35元時(shí),該超市獲得最大利潤(rùn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,一次函數(shù)y=(1-3k)x+2k-1,試回答:
(1)k為何值時(shí),y隨x的增大而減。
(2)k為何值時(shí),圖像與y軸交點(diǎn)在x軸上方?
(3) 若一次函數(shù)y=(1-3k)x+2k-1經(jīng)過(guò)點(diǎn)(3,4).請(qǐng)求出一次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校開展“書香校園”活動(dòng)以來(lái),受到同學(xué)們的廣泛關(guān)注,學(xué)校為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計(jì)表.學(xué)生借閱圖書的次數(shù)統(tǒng)計(jì)表
借閱圖書的次數(shù) | 0次 | 1次 | 2次 | 3次 | 4次及以上 |
人數(shù) | 7 | 13 | a | 10 | 3 |
請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問(wèn)題:
______,______.
該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是______,眾數(shù)是______.
請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“3次”所對(duì)應(yīng)扇形的圓心角的度數(shù);
若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書“4次及以上”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線y=x2+2x﹣3與x軸相交于A,B兩點(diǎn),與y軸交于點(diǎn)C,D為頂點(diǎn).
(1)求直線AC的解析式和頂點(diǎn)D的坐標(biāo);
(2)已知E(0, ),點(diǎn)P是直線AC下方的拋物線上一動(dòng)點(diǎn),作PR⊥AC于點(diǎn)R,當(dāng)PR最大時(shí),有一條長(zhǎng)為的線段MN(點(diǎn)M在點(diǎn)N的左側(cè))在直線BE上移動(dòng),首尾順次連接A、M、N、P構(gòu)成四邊形AMNP,請(qǐng)求出四邊形AMNP的周長(zhǎng)最小時(shí)點(diǎn)N的坐標(biāo);
(3)如圖2,過(guò)點(diǎn)D作DF∥y軸交直線AC于點(diǎn)F,連接AD,Q點(diǎn)是線段AD上一動(dòng)點(diǎn),將△DFQ沿直線FQ折疊至△D1FQ,是否存在點(diǎn)Q使得△D1FQ與△AFQ重疊部分的圖形是直角三角形?若存在,請(qǐng)求出AQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫三角形.
(1)在圖1中,畫一個(gè)三角形,使它的三邊長(zhǎng)都是有理數(shù);
(2)在圖2中,畫一個(gè)三角形,使它的三邊長(zhǎng)分別為3,2,;
(3)在圖3中,畫一個(gè)三角形,使它的三邊都是無(wú)理數(shù),并且構(gòu)成的三角形是直角三角形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將矩形ABCD沿對(duì)角線BD對(duì)折,使點(diǎn)C落在處,連接B交AD于點(diǎn)E,AB=4, BC=6.
求證: (1)AE=E; (2)△EBD面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOC是直角,OD平分∠AOC,∠BOC=60° 求:
(1)∠AOD的度數(shù);
(2)∠AOB的度數(shù);
(3)∠DOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABD、△CBD關(guān)于直線BD對(duì)稱,點(diǎn)E是BC上一點(diǎn),線段CE的垂直平分線交BD于點(diǎn)F,連接AF、EF.
(1) 求證:AF=EF;
(2) 如圖2,連接AE交BD于點(diǎn)G.若EF∥CD,求證:;
(3) 如圖3,若∠BAD=90°,且點(diǎn)E在BF的垂直平分線上,tan∠ABD=,DF=,請(qǐng)直接寫出AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )
A. ∠1=∠3 B. 如果∠2=30°,則有AC∥DE
C. 如果∠2=30°,則有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com