【題目】已知f(x)=|x﹣a|,a∈R.
(1)當(dāng)a=1時(shí),求不等式f(x)+|2x﹣5|≥6的解集;
(2)若函數(shù)g(x)=f(x)﹣|x﹣3|的值域?yàn)锳,且[﹣1,2]A,求a的取值范圍.

【答案】
(1)解:a=1時(shí),|x﹣1|+|2x﹣5|≥6,

x≤1時(shí):1﹣x﹣2x+5≥6,解得:x≤0,∴x≤0,

1<x<2.5時(shí):x﹣1﹣2x+5≥6,解得:x≤﹣1,不成立;

x≥2.5時(shí):x﹣1+2x﹣5≥6,解得:x≥4,∴x≥4,

故不等式的解集是{x|x≥4或x≤0};


(2)解:g(x)=|x﹣a|﹣|x﹣3|,

a≥3時(shí):g(x)=

∴3﹣a≤g(x)≤a﹣3,

∵[﹣1,2]A,∴ ,解得a≥5;

a<3時(shí),a﹣3≤g(x)≤3﹣a,

,解得:a≤1;

綜上:a≤1或a≥5


【解析】(1)將a=1代入f(x),通過討論x的范圍求出各個(gè)區(qū)間上的x的范圍,取并集即可;(2)通過討論a的范圍,得到關(guān)于a的不等式組,解出即可.
【考點(diǎn)精析】本題主要考查了絕對(duì)值不等式的解法的相關(guān)知識(shí)點(diǎn),需要掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形OABC的邊長為4,對(duì)角線相交于點(diǎn)P,拋物線L經(jīng)過O、P、A三點(diǎn),點(diǎn)E是正方形內(nèi)的拋物線上的動(dòng)點(diǎn).

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,
①直接寫出O、P、A三點(diǎn)坐標(biāo);
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一段筆直的公路AC長20千米,途中有一處休息點(diǎn)B,AB長15千米,甲、乙兩名長跑愛好者同時(shí)從點(diǎn)A出發(fā),甲以15千米/時(shí)的速度勻速跑至點(diǎn)B,原地休息半小時(shí)后,再以10千米/時(shí)的速度勻速跑至終點(diǎn)C;乙以12千米/時(shí)的速度勻速跑至終點(diǎn)C,下列選項(xiàng)中,能正確反映甲、乙兩人出發(fā)后2小時(shí)內(nèi)運(yùn)動(dòng)路程y(千米)與時(shí)間x(小時(shí))函數(shù)關(guān)系的圖象是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:
﹣1)÷ ,其中x的值從不等式組 的整數(shù)解中選。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=CC1=2,M是AB的中點(diǎn).
(1)求證:平面A1CM⊥平面ABB1A1;
(2)求點(diǎn)M到平面A1CB1的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年二十國集團(tuán)領(lǐng)導(dǎo)人峰會(huì)(簡稱“G20峰會(huì)”)于9月4日至5日在浙江杭州召開,為保證會(huì)議期間交通暢通,杭州市已發(fā)布9月1日至7日為“G20峰會(huì)”調(diào)休期間.據(jù)報(bào)道對(duì)于杭州市民:浙江省旅游局聯(lián)合11個(gè)市開展一系列旅游惠民活動(dòng),活動(dòng)內(nèi)容為:“本省游”、“黃山游”、“黔東南游”,某旅游公司為了解群眾出游情況,擬采用分層抽樣的方法從有意愿“本省游”、“黃山游”、“黔東南游”這三個(gè)區(qū)域旅游的群眾中抽取7人進(jìn)行某項(xiàng)調(diào)查,已知有意愿參加“本省游”、“黃山游”、“黔東南游”的群眾分別有360,540,360人.
(1)求從“本省游”、“黃山游”、“黔東南游”,三個(gè)區(qū)域旅游的群眾分別抽取的人數(shù);
(2)若從抽得的7人中隨機(jī)抽取2人進(jìn)行調(diào)查,用列舉法計(jì)算這2人中至少有1人有意愿參加“本省游”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,底面是正三角形,三棱柱的高為 ,若P是△A1B1C1中心,且三棱柱的體積為 ,則PA與平面ABC所成的角大小是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1<0,an+1= ,數(shù)列{bn}滿足:bn=nan(n∈N*),設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,當(dāng)n=7時(shí)Sn有最小值,則a1的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知Rt△ABC,AB=3,BC=4,CA=5,P為△ABC外接圓上的一動(dòng)點(diǎn),且 的最大值是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案