【題目】已知Rt△ABC,AB=3,BC=4,CA=5,P為△ABC外接圓上的一動點,且 的最大值是( )
A.
B.
C.
D.
【答案】B
【解析】解:以AC的中點為原點,以ACx軸,建立如圖所示的平面直角坐標系,
則△ABC外接圓的方程為x2+y2=2.52 ,
設(shè)P的坐標為( cosθ, sinθ),
過點B作BD垂直x軸,
∵sinA= ,AB=3
∴BD=ABsinA= ,AD=ABcosA= ×3= ,
∴OD=AO﹣AD=2.5﹣ = ,
∴B(﹣ , ),
∵A(﹣ ,0),C( ,0)
∴ =( , ), =(5,0), =( cosθ+ , sinθ)
∵ =x +y
∴( cosθ+ , sinθ)=x( , )+y(5,0)=( x+5y, x)
∴ cosθ+ = x+5y, sinθ= x,
∴y= cosθ﹣ sinθ+ ,x= sinθ,
∴x+y= cosθ+ sinθ+ = sin(θ+φ)+ ,其中sinφ= ,cosφ= ,
當sin(θ+φ)=1時,x+y有最大值,最大值為 + = ,
故選:B
【考點精析】解答此題的關(guān)鍵在于理解平面向量的基本定理及其意義的相關(guān)知識,掌握如果、是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù)、,使.
科目:初中數(shù)學 來源: 題型:
【題目】已知f(x)=|x﹣a|,a∈R.
(1)當a=1時,求不等式f(x)+|2x﹣5|≥6的解集;
(2)若函數(shù)g(x)=f(x)﹣|x﹣3|的值域為A,且[﹣1,2]A,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若存在正實數(shù)m,使得關(guān)于x的方程x+a(2x+2m﹣4ex)[ln(x+m)﹣lnx]=0成立,其中e為自然對數(shù)的底數(shù),則實數(shù)a的取值范圍是( )
A.(﹣∞,0)
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F(xiàn)分別是AB,AC上的點,且 ,(其中λ,μ∈(0,1)),且λ+4μ=1,若線段EF,BC的中點分別為M,N,則 的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以原點O為極點,以x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為 . (I)求曲線C2的直角坐標系方程;
(II)設(shè)M1是曲線C1上的點,M2是曲線C2上的點,求|M1M2|的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足 ,(n∈N+). (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè) ,數(shù)列{bn}的前n項和Sn , 求證: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小敏從地出發(fā)向地行走,同時小聰從地出發(fā)向地行走,如圖所示,相交于點 的兩條線段分別表示小敏、小聰離地的距離(km)與已用時間(h)之間的關(guān)系,則________時,小敏、小聰兩人相距7 km.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等邊△ABO在平面直角坐標系中,點A(4 ,0),函數(shù)y= (x>0,k為常數(shù))的圖象經(jīng)過AB的中點D,交OB于E.
(1)求k的值;
(2)若第一象限的雙曲線y= 與△BDE沒有交點,請直接寫出m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com