【題目】直三棱柱ABC﹣A1B1C1中,底面是正三角形,三棱柱的高為 ,若P是△A1B1C1中心,且三棱柱的體積為 ,則PA與平面ABC所成的角大小是(
A.
B.
C.
D.

【答案】C
【解析】解:由題意設(shè)底面正△ABC的邊長為a,過P作PO⊥平面ABC,垂足為O, 則點(diǎn)O為底面△ABC的中心,故∠PAO即為PA與平面ABC所成角,
∵|OA|= = ,|OP|=
又∵直三棱柱ABC﹣A1B1C1中體積為 ,
∴由直棱柱體積公式得V= = ,解得a= ,
∴tan∠PAO= = ,

∴PA與平面ABC所成的角為
故選:C.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解空間角的異面直線所成的角的相關(guān)知識,掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+b與反比例函數(shù)y= (x>0)的圖象交于A,B兩點(diǎn),與x軸、y軸分別交于C,D兩點(diǎn),連結(jié)OA,OB,過A作AE⊥x軸于點(diǎn)E,交OB于點(diǎn)F,設(shè)點(diǎn)A的橫坐標(biāo)為m.

(1)b=(用含m的代數(shù)式表示);
(2)若SOAF+S四邊形EFBC=4,則m的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】表為小潔打算在某電信公司購買一支MAT手機(jī)與搭配一個門號的兩種方案.此公司每個月收取通話費(fèi)與月租費(fèi)的方式如下:若通話費(fèi)超過月租費(fèi),只收通話費(fèi);若通話費(fèi)不超過月租費(fèi),只收月租費(fèi).若小潔每個月的通話費(fèi)均為x元,x為400到600之間的整數(shù),則在不考慮其他費(fèi)用并使用兩年的情況下,x至少為多少才會使得選擇乙方案的總花費(fèi)比甲方案便宜?( 。

甲方案

乙方案

門號的月租費(fèi)(元)

400

600

MAT手機(jī)價格(元)

15000

13000

注意事項(xiàng):以上方案兩年內(nèi)不可變更月租費(fèi)


A.500
B.516
C.517
D.600

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=|x﹣a|,a∈R.
(1)當(dāng)a=1時,求不等式f(x)+|2x﹣5|≥6的解集;
(2)若函數(shù)g(x)=f(x)﹣|x﹣3|的值域?yàn)锳,且[﹣1,2]A,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ﹣2+2alnx.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)在區(qū)間[ ,2]上的最小值為0,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究院的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如圖所示,為抑制房價過快上漲,政府從8月份采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.
(Ⅰ)地產(chǎn)數(shù)據(jù)研究院研究發(fā)現(xiàn),3月至7月的各月均價y(萬元/平方米)與月份x之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立y關(guān)于x的回歸方程(系數(shù)精確到0.01),政府若不調(diào)控,依次相關(guān)關(guān)系預(yù)測第12月份該市新建住宅銷售均價;
(Ⅱ)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機(jī)抽取三個月份的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個月份的所屬季度,記不同季度的個數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù): =25, =5.36, =0.64
回歸方程 = x+ 中斜率和截距的最小二乘估計公式分別為:
= , =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)f(x)= cos2x﹣sin2x的圖象向右平移 個單位得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)在下列哪個區(qū)間是單調(diào)遞減的(
A.[﹣ ,0]
B.[﹣π,0]
C.[﹣ , ]
D.[0, ]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若存在正實(shí)數(shù)m,使得關(guān)于x的方程x+a(2x+2m﹣4ex)[ln(x+m)﹣lnx]=0成立,其中e為自然對數(shù)的底數(shù),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,0)
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知事件“在矩形ABCD的邊CD上隨機(jī)取一點(diǎn)P,使△APB的最大邊是AB”發(fā)生的概率為 ,則 =(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案