【題目】如圖,已知AB=AD,∠ABC=∠ADC.試判斷AC與BD的位置關(guān)系,并說(shuō)明理由.
【答案】AC⊥BD,理由見(jiàn)解析.
【解析】
AC與BD垂直,理由為:由AB=AD,利用等邊對(duì)等角得到一對(duì)角相等,利用等式性質(zhì)得到∠BDC=∠DBC,利用等角對(duì)等邊得到DC=BC,利用SSS得到三角形ABC與三角形ADC全等,利用全等三角形對(duì)應(yīng)角相等得到∠DAC=∠BAC,再利用三線合一即可得證.
AC⊥BD,理由為:
∵AB=AD(已知),
∴∠ADB=∠ABD(等邊對(duì)等角),
∵∠ABC=∠ADC(已知),
∴∠ABC﹣∠ABD=∠ADC﹣∠ADB(等式性質(zhì)),
即∠BDC=∠DBC,
∴DC=BC(等角對(duì)等邊),
在△ABC和△ADC中,
∴△ABC≌△ADC(SSS),
∴∠DAC=∠BAC(全等三角形的對(duì)應(yīng)角相等),
又∵AB=AD,
∴AC⊥BD(等腰三角形三線合一).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為積極響應(yīng)“南孔圣地,衢州有禮”城市品牌建設(shè),在每周五下午第三節(jié)課開(kāi)展了豐富多彩的走班選課活動(dòng).其中綜合實(shí)踐類共開(kāi)設(shè)了“禮行”“禮知”“禮思”“禮藝”“禮源”等五門(mén)課程,要求全校學(xué)生必須參與其中一門(mén)課程.為了解學(xué)生參與綜合實(shí)踐類課程活動(dòng)情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)請(qǐng)問(wèn)被隨機(jī)抽取的學(xué)生共有多少名?并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)在扇形統(tǒng)計(jì)圖中,求選擇“禮行”課程的學(xué)生人數(shù)所對(duì)應(yīng)的扇形圓心角的度數(shù).
(3)若該校共有學(xué)生1200人,估計(jì)其中參與“禮源”課程的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板中的兩塊直角三角形的直角頂點(diǎn)0按圖1方式疊放在一起(其中∠C=30°,∠CDO=60°;∠OAB=∠OBA=45°).△COD繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)一周,旋轉(zhuǎn)的速度為每秒10°,若旋轉(zhuǎn)時(shí)間為t秒,請(qǐng)回答下列問(wèn)題:(請(qǐng)直接寫(xiě)出答案)
(1)當(dāng)0<t<9時(shí)(如圖2),∠BOC與∠AOD有何數(shù)量關(guān)系
(2)當(dāng)t為何值時(shí),邊OA∥CD?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列3×3的網(wǎng)格圖都是由9個(gè)相同的小正方形組成,每個(gè)網(wǎng)格圖中有3個(gè)小正方形已涂上陰影,請(qǐng)?jiān)谟嘞碌?/span>6個(gè)空白小正方形中,按下列要求涂上陰影:
(1)請(qǐng)?jiān)趫D1中選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)軸對(duì)稱圖形,但不是中心對(duì)稱圖形;
(2)請(qǐng)?jiān)趫D2中選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)中心對(duì)稱圖形,但不是軸對(duì)稱圖形;
(3)請(qǐng)?jiān)趫D3中選取2個(gè)涂上陰影,使5個(gè)陰影小正方形組成一個(gè)軸對(duì)稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列說(shuō)法中:①過(guò)一點(diǎn)有且只有一條直線與已知直線平行;②-0.9是0.81的平方根;③若在平面直角坐標(biāo)系中直線垂直于軸,則直線上所有的點(diǎn)的橫坐標(biāo)相同;④是一個(gè)負(fù)數(shù);⑤0的相反數(shù)和倒數(shù)都是0;⑥;⑦;⑧全體有理數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng).以上真命題的序號(hào)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,平分,過(guò)點(diǎn)作交于點(diǎn)交于點(diǎn),作的平分線交于點(diǎn),交于點(diǎn),若,下列結(jié)論:
①;②;③;④;⑤.其中正確的是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,平分,過(guò)點(diǎn)作,交于點(diǎn),交于點(diǎn),作的平分線交于點(diǎn),交于點(diǎn),若,下列結(jié)論:①;②;③;④;⑤.其中正確的個(gè)數(shù)是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D,E分別為AB,AC的中點(diǎn),則△ADE與四邊形BCED的面積比為( )
A.1:1
B.1:2
C.1:3
D.1:4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)請(qǐng)用兩種不同的方法列代數(shù)式表示圖1中陰影部分的面積.
方法①: ;
方法②: ;
(2)根據(jù)(1)寫(xiě)出一個(gè)等式: ;
(3)若x+y=8,xy=3.75,利用(2)中的結(jié)論,求x,y;
(4)有許多代數(shù)恒等式可以用圖形的面積來(lái)表示.如圖2,它表示了(2m+n)(m+n)=2m2+3mn+n2.試畫(huà)出一個(gè)幾何圖形,使它的面積能表示(2m+n)(m+2n)=2m2+5mn+2n2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com