【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論中:①ac>0;②a+b+c<0;③4a﹣2b+c<0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正確的個(gè)數(shù)為( )
A. 2 B. 3 C. 4 D. 5
【答案】C
【解析】
由拋物線(xiàn)的開(kāi)口方向判斷a與0的關(guān)系,由拋物線(xiàn)與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱(chēng)軸及拋物線(xiàn)的頂點(diǎn)坐標(biāo)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
①圖象開(kāi)口向下,與y軸交于負(fù)半軸,對(duì)稱(chēng)軸在y軸右側(cè),能得到:a<0,c<0,
∴ac>0,故①正確;
②當(dāng)x=1時(shí),y>0,∴a+b+c>0,故②錯(cuò)誤;
③當(dāng)x=-2時(shí),y<0,∴4a-2b+c<0,故③正確;
④∵對(duì)稱(chēng)軸x=-<1,
∴2a+b<0,故④正確;
⑤∵拋物線(xiàn)的頂點(diǎn)在x軸的上方,
∴<1,
∵4a<0,
∴4ac-b2>4a,故⑤錯(cuò)誤;
⑥∵2a+b>0,
∴2a+b-a>-a,
∴a+b>-a,
∵a<0,
∴-c>0,
∴a+b>0,故⑥正確;
綜上所述正確的個(gè)數(shù)為4個(gè),
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱(chēng)軸為直線(xiàn).下列結(jié)論中,正確的是( 。
A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩條輪船同時(shí)從港口A出發(fā),甲輪船以每小時(shí)30海里的速度沿著北偏東60°的方向航行,乙輪船以每小時(shí)15海里的速度沿著正東方向行進(jìn),1小時(shí)后,甲船接到命令要與乙船會(huì)合,于是甲船改變了行進(jìn)的速度,沿著東南方向航行,結(jié)果在小島C處與乙船相遇.假設(shè)乙船的速度和航向保持不變,求:
(1)港口A與小島C之間的距離;
(2)甲輪船后來(lái)的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜生產(chǎn)基地用裝有恒溫系統(tǒng)的大棚栽培一種適宜生長(zhǎng)溫度為15﹣20℃的新品種,如圖是某天恒溫系統(tǒng)從開(kāi)啟到關(guān)閉及關(guān)閉后,大棚里溫度y(℃)隨時(shí)間x(h)變化的函數(shù)圖象,其中AB段是恒溫階段,BC段是雙曲線(xiàn)y=的一部分,請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)求0到2小時(shí)期間y隨x的函數(shù)解析式;
(2)恒溫系統(tǒng)在一天內(nèi)保持大棚內(nèi)溫度不低于15℃的時(shí)間有多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形OABC中,OA∥BC,A、B兩點(diǎn)的坐標(biāo)分別為A(13,0),B(11,12).動(dòng)點(diǎn)P、Q分別從O、B兩點(diǎn)出發(fā),點(diǎn)P以每秒2個(gè)單位的速度沿x軸向終點(diǎn)A運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿BC方向運(yùn)動(dòng);當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng).線(xiàn)段PQ和OB相交于點(diǎn)D,過(guò)點(diǎn)D作DE∥x軸,交AB于點(diǎn)E,射線(xiàn)QE交x軸于點(diǎn)F.設(shè)動(dòng)點(diǎn)P、Q運(yùn)動(dòng)時(shí)間為t(單位:秒).
(1)當(dāng)t為何值時(shí),四邊形PABQ是平行四邊形.
(2)△PQF的面積是否發(fā)生變化?若變化,請(qǐng)求出△PQF的面積s關(guān)于時(shí)間t的函數(shù)關(guān)系式;若不變,請(qǐng)求出△PQF的面積.
(3)隨著P、Q兩點(diǎn)的運(yùn)動(dòng),△PQF的形狀也隨之發(fā)生了變化,試問(wèn)何時(shí)會(huì)出現(xiàn)等腰△PQF?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于二次函數(shù)y=x2﹣2mx﹣3,有下列結(jié)論:
①它的圖象與x軸有兩個(gè)交點(diǎn);
②如果當(dāng)x≤﹣1時(shí),y隨x的增大而減小,則m=﹣1;
③如果將它的圖象向左平移3個(gè)單位后過(guò)原點(diǎn),則m=1;
④如果當(dāng)x=2時(shí)的函數(shù)值與x=8時(shí)的函數(shù)值相等,則m=5.
其中一定正確的結(jié)論是_______.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在以O為原點(diǎn)的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)(x>0)與AB相交于點(diǎn)D,與BC相交于點(diǎn)E,若BD=3AD,且△ODE的面積是12,則k=( )
A. 6 B. 9 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰梯形ABCD放置在平面坐標(biāo)系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo)和反比例函數(shù)的解析式;
(2)將等腰梯形ABCD向上平移2個(gè)單位后,問(wèn)點(diǎn)B是否落在雙曲線(xiàn)上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】折紙與證明﹣﹣﹣用紙折出黃金分割點(diǎn):
第一步:如圖(1),先將一張正方形紙片ABCD對(duì)折,得到折痕EF;再折出矩形BCFE的對(duì)角線(xiàn)BF.
第二步:如圖(2),將AB邊折到BF上,得到折痕BG,試說(shuō)明點(diǎn)G為線(xiàn)段AD的黃金分割點(diǎn)(AG>GD)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com