【題目】如圖,在中,為直徑,為弦.過延長線上一點,作于點,交于點,交于點,是的中點,連接,.
(1)判斷與的位置關(guān)系,并說明理由;
(2)若,,,求的長.
【答案】與相切;理由見解析;(2);
【解析】
(1)連接OC,如圖,利用圓周角定理得到∠ACB=90°,再根據(jù)斜邊上的中線性質(zhì)得MC=MG=ME,所以∠G=∠1,接著證明∠1+∠2=90°,從而得到∠OCM=90°,然后根據(jù)直線與圓的位置關(guān)系的判斷方法可判斷CM為⊙O的切線;
(2)先證明∠G=∠A,再證明∠EMC=∠4,則可判定△EFC∽△ECM,利用相似比先計算出CE,再計算出EF,然后計算ME﹣EF即可.
(1)CM與⊙O相切.理由如下:
連接OC,如圖,∵GD⊥AO于點D,∴∠G+∠GBD=90°.
∵AB為直徑,∴∠ACB=90°.
∵M點為GE的中點,∴MC=MG=ME,∴∠G=∠1.
∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM為⊙O的切線;
(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A.
∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=5,點E,F(xiàn)是正方形ABCD內(nèi)的兩點,且AE=FC=3,BE=DF=4,則EF的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛貨車早晨7∶00出發(fā),從甲地駛往乙地送貨.如圖是貨車行駛路程y(km)與行駛時間x(h)的完整的函數(shù)圖像(其中點B、C、D在同一條直線上),小明研究圖像得到了以下結(jié)論:
①甲乙兩地之間的路程是100 km;
②前半個小時,貨車的平均速度是40 km/h;
③8∶00時,貨車已行駛的路程是60 km;
④最后40 km貨車行駛的平均速度是100 km/h;
⑤貨車到達乙地的時間是8∶24,
其中,正確的結(jié)論是( )
A.①②③④B.①③⑤C.①③④D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD內(nèi)一點E連接BE、CE,過C作CF⊥CE與BE延長線交于點F,連接DF、DE.CE=CF=1,DE=,下列結(jié)論中:①△CBE≌△CDF;②BF⊥DF;③點D到CF的距離為2;④S四邊形DECF=+1.其中正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給出下列4個命題:①兩邊及其中一邊上的中線對應相等的兩個三角形全等;②兩邊及其中一邊上的高對應相等的兩個三角形全等;③兩邊及一角對應相等的兩個三角形全等;④有兩角及其中一角的角平分線對應相等的兩個三角形全等.其中正確的的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com