【題目】如圖,在中,、是對(duì)角線上兩點(diǎn),,,,則的大小為___________
【答案】21°.
【解析】
由直角三角形斜邊中線的性質(zhì)得DE=AE=EF,進(jìn)而可得DC=DE,設(shè)∠ADE=x,則∠DAE=x,進(jìn)而可得∠DCE=∠DEC=2x,再根據(jù)平行線的性質(zhì)可得 ∠ACB=∠DAE=x,再根據(jù)∠ACB+∠ACD=∠BCD=63°,即可求得答案.
∵AE=EF,∠ADF=90°,
∴DE=AE=EF,
∴∠DAE=∠ADE,
又∵AE=EF=CD,
∴DC=DE,
∴∠DEC=∠DCE,
設(shè)∠ADE=x,則∠DAE=x,
則∠DCE=∠DEC=2x,
又AD∥BC,
∴∠ACB=∠DAE=x,
由∠ACB+∠ACD=∠BCD=63°,
得:x+2x=63°,
解得:x=21°,
∴∠ADE=21°,
故答案為:21°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角板是我們學(xué)習(xí)數(shù)學(xué)的好幫手.將一對(duì)直角三角板如圖放置,點(diǎn)C在FD的延長線上,點(diǎn)B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,則CD的長度是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀(jì)念品生產(chǎn)訂單,按要求在15天內(nèi)完成,約定這批紀(jì)念品的出廠價(jià)為每件20元,設(shè)第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:
天數(shù)(x) | 1 | 3 | 6 | 10 |
每件成本p(元) | 7.5 | 8.5 | 10 | 12 |
任務(wù)完成后,統(tǒng)計(jì)發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關(guān)系:y=,
設(shè)李師傅第x天創(chuàng)造的產(chǎn)品利潤為W元.
(1)直接寫出p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:
(2)求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?
(3)任務(wù)完成后.統(tǒng)計(jì)發(fā)現(xiàn)平均每個(gè)工人每天創(chuàng)造的利潤為299元.工廠制定如下獎(jiǎng)勵(lì)制度:如果一個(gè)工人某天創(chuàng)造的利潤超過該平均值,則該工人當(dāng)天可獲得20元獎(jiǎng)金.請計(jì)算李師傅共可獲得多少元獎(jiǎng)金?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高爾基說:“書,是人類進(jìn)步的階梯.”閱讀可以豐富知識(shí)、拓展視野、充實(shí)生活等諸多益處.為了解學(xué)生的課外閱讀情況,某校隨機(jī)抽查了部分學(xué)生閱讀課外書冊數(shù)的情況,并繪制出如下統(tǒng)計(jì)圖,其中條形統(tǒng)計(jì)圖因?yàn)槠茡p丟失了閱讀5冊書數(shù)的數(shù)據(jù).
(1)求條形圖中丟失的數(shù)據(jù),并寫出閱讀書冊數(shù)的眾數(shù)和中位數(shù);
(2)根據(jù)隨機(jī)抽查的這個(gè)結(jié)果,請估計(jì)該校1200名學(xué)生中課外閱讀5冊書的學(xué)生人數(shù);
(3)若學(xué)校又補(bǔ)查了部分同學(xué)的課外閱讀情況,得知這部分同學(xué)中課外閱讀最少的是6冊,將補(bǔ)查的情況與之前的數(shù)據(jù)合并后發(fā)現(xiàn)中位數(shù)并沒有改變,試求最多補(bǔ)查了多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于BC兩點(diǎn),拋物線經(jīng)過B、C兩點(diǎn),且與x軸交于點(diǎn)A
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)M是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN平行于y軸交直線BC于點(diǎn)N,連接AM、BM、AN,求四邊形MANB面積S的最大值,并求出此時(shí)點(diǎn)M的坐標(biāo);
(3)拋物線的對(duì)稱軸交直線BC于點(diǎn)D,若Q為y軸上一點(diǎn),則在拋物線上是否存在一點(diǎn)P,使得以B、D、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長為1的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).四邊形的頂點(diǎn)在格點(diǎn)上,點(diǎn)是邊與網(wǎng)格線的交點(diǎn).請選擇適當(dāng)?shù)母顸c(diǎn),用無刻度的直尺在網(wǎng)格中完成下列畫圖,保留連線的痕跡,不要求說明理由
(1)如圖1,過點(diǎn)畫線段,使,且
(2)如圖1,在邊上畫一點(diǎn),使
(3)如圖2,過點(diǎn)畫線段,使,且
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了抓住夏季來臨,襯衫熱銷的契機(jī),決定用46000元購進(jìn)、、三種品牌的襯衫共300件,并且購進(jìn)的每一種襯衫的數(shù)量都不少于90件.設(shè)購進(jìn)種型號(hào)的襯衣件,購進(jìn)種型號(hào)的襯衣件,三種品牌的襯衫的進(jìn)價(jià)和售價(jià)如下表所示:
型號(hào) | |||
進(jìn)價(jià)(元/件) | 100 | 200 | 150 |
售價(jià)(元/件) | 200 | 350 | 300 |
(Ⅰ)直接用含、的代數(shù)式表示購進(jìn)種型號(hào)襯衣的件數(shù),其結(jié)果可表示為______;
(Ⅱ)求與之間的函數(shù)關(guān)系式;
(Ⅲ)如果該商場能夠?qū)①忂M(jìn)的襯衫全部售出,但在銷售這些襯衫的過程中還需要另外支出各種費(fèi)用共計(jì)1000元.
①求利潤(元)與(件)之間的函數(shù)關(guān)系式;
②求商場能夠獲得的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)、兩種商品,購買1個(gè)商品比購買1個(gè)商品多花10元,并且花費(fèi)300元購買商品和花費(fèi)100元購買商品的數(shù)量相等.
(1)求購買一個(gè)商品和一個(gè)商品各需要多少元;
(2)商店準(zhǔn)備購買、兩種商品共80個(gè),若商品的數(shù)量不少于商品數(shù)量的4倍,并且購買、商品的總費(fèi)用不低于1000元且不高于1050元,那么商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).
(1)點(diǎn)的坐標(biāo)為__________,點(diǎn)的坐標(biāo)為__________,線段的長為__________,拋物線的解析式為__________.
(2)點(diǎn)是線段下方拋物線上的一個(gè)動(dòng)點(diǎn).
①如果在軸上存在點(diǎn),使得以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形.求點(diǎn)的坐標(biāo).
②如圖2,過點(diǎn)作交線段于點(diǎn),過點(diǎn)作直線交于點(diǎn),交軸于點(diǎn),記,求關(guān)于的函數(shù)解析式;當(dāng)取和時(shí),試比較的對(duì)應(yīng)函數(shù)值和的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com