如圖所示,O為△ABC的外心,若∠BAC=70°,則∠OBC=
20°
20°
分析:首先連接OC,由O為△ABC的外心,∠BAC=70°,根據(jù)圓周角定理,即可求得∠BOC的度數(shù),又由OB=OC,根據(jù)等腰三角形的性質(zhì)與三角形內(nèi)角和定理,即可求得∠OBC的度數(shù).
解答:解:連接OC,
∵∠BAC=70°,
∴∠BOC=2∠BAC=140°,
∵OB=OC,
∴∠OBC=∠OCB=
180°-∠BOC
2
=20°.
故答案為:20°.
點評:此題考查了圓周角定理、等腰三角形的性質(zhì)以及三角形內(nèi)角和定理.此題難度不大,解題的關(guān)鍵是注意掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半定理的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

2、如圖所示,D為AB邊上一點,AD:DB=3:4,DE∥AC交BC于點E,則S△BDE:S△AEC等于(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖所示,O為AB、CD的中點,AE=BF,你從圖中可以找到全等三角形共( 。

查看答案和解析>>

科目:初中數(shù)學 來源:《19.6 相似三角形的性質(zhì)》2010年同步練習(解析版) 題型:選擇題

如圖所示,D為AB邊上一點,AD:DB=3:4,DE∥AC交BC于點E,則S△BDE:S△AEC等于( )

A.16:21
B.3:7
C.4:7
D.4:3

查看答案和解析>>

科目:初中數(shù)學 來源:《24.3 相似三角形的性質(zhì)》2009年同步練習(解析版) 題型:選擇題

如圖所示,D為AB邊上一點,AD:DB=3:4,DE∥AC交BC于點E,則S△BDE:S△AEC等于( )

A.16:21
B.3:7
C.4:7
D.4:3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,DAB邊上一點,ADDB=3∶4,DEACBC于點E,則SBDE∶SAEC等于( 。

A.16∶21   B.3∶7 C.4∶7 D.4∶3

查看答案和解析>>

同步練習冊答案