【題目】如圖,在邊長為4的正方形ABCD中,E是AB邊上的一點(diǎn),且AE=3,點(diǎn)Q為對角線AC上的動(dòng)點(diǎn),則△BEQ周長的最小值為 .
【答案】6
【解析】解:連接BD,DE,
∵四邊形ABCD是正方形,
∴點(diǎn)B與點(diǎn)D關(guān)于直線AC對稱,
∴DE的長即為BQ+QE的最小值,
∵DE=BQ+QE= = =5,
∴△BEQ周長的最小值=DE+BE=5+1=6.
所以答案是:6.
【考點(diǎn)精析】利用勾股定理的概念和正方形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,且AB=6,C是⊙O上一點(diǎn),D是 的中點(diǎn),過點(diǎn)D作⊙O的切線,與AB,AC的延長線分別交于點(diǎn)E,F(xiàn),連接AD.
(1)求證:AF⊥EF;
(2)填空:
①當(dāng)BE=時(shí),點(diǎn)C是AF的中點(diǎn);
②當(dāng)BE=時(shí),四邊形OBDC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】各頂點(diǎn)都在方格紙格點(diǎn)(橫豎格子線的交錯(cuò)點(diǎn))上的多邊形稱為格點(diǎn)多邊形.如何計(jì)算它的面積?奧地利數(shù)學(xué)家皮克證明了格點(diǎn)多邊形的面積公式:,其中表示多邊形內(nèi)部的格點(diǎn)數(shù),表示多邊形邊界上的格點(diǎn)數(shù),表示多邊形的面積.如圖①,
(1)請算出圖②中格點(diǎn)多邊形的面積是 .
(2)請?jiān)趫D③中畫一個(gè)格點(diǎn)平行四邊形,使它的面積為7,且每條邊上除頂點(diǎn)外無其他格點(diǎn).
(3)請?jiān)趫D④中畫一個(gè)格點(diǎn)菱形(非正方形),使它內(nèi)部和邊界上都只含有4個(gè)格點(diǎn),并算出它的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,根據(jù)材料回答:
例如1:(-2)3×33=(-2)×(-2)×(-2)×3×3×3
=[(-2)×3]×[(-2)×3]×[(-2)×3]
=[(-2)×3]3=(-6)3=-216.
例如2:
86×0.1256=8×8×8×8×8×8×0.125×0.125×0.125×0.125×0.125×0.125
=(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)
=(8×0.125)6=1.
(1)仿照上面材料的計(jì)算方法計(jì)算:;
(2)由上面的計(jì)算可總結(jié)出一個(gè)規(guī)律:(用字母表示)an·bn=_______________;
(3)用(2)的規(guī)律計(jì)算:-0.42018××.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1△ABC為等邊三角形,點(diǎn)D為AB邊上的一點(diǎn),∠DCE=30°,∠DCF=60°且CF=CD
(1)求∠EAF的度數(shù);
(2)DE與EF相等嗎?請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為 2 的正方形 ABCD 中剪去一個(gè)邊長為 1 的小正方形 EFGD ,動(dòng)點(diǎn) P 從點(diǎn) A 出發(fā),沿A E F G C B 的路線,繞多邊形的邊勻速運(yùn)動(dòng)到點(diǎn) B 時(shí)停止,則 ABP 的面積 S 隨著時(shí)間t 變化的函數(shù)圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某建筑物BC的高度,小明先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地而上向建筑物前進(jìn)了50m到達(dá)D處,此時(shí)遇到一斜坡,坡度i=1: ,沿著斜坡前進(jìn)20米到達(dá)E處測得建筑物頂部的仰角是45°,(坡度i=1: 是指坡面的鉛直高度FE與水平寬度DE的比).請你計(jì)算出該建筑物BC的高度.(取 =1.732,結(jié)果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(3,3),B(1,1),C(4,-1).
(1)直接寫出點(diǎn)A,B,C關(guān)于x軸對稱的點(diǎn)A1,B1,C1,的坐標(biāo):A1( , ),B1( , ),C1( , ).
(2)在圖中作出△ABC關(guān)于y軸對稱的圖象△A2B2C2.
(3)在y軸上求作一點(diǎn)P,使得PA+PB的值最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是給定△ABC邊BC所在直線上一動(dòng)點(diǎn),E是線段AD上一點(diǎn),DE=2AE,連接BE,CE,點(diǎn)D從B的左邊開始沿著BC方向運(yùn)動(dòng),則△BCE的面積變換情況是( )
A.逐漸變大
B.逐漸變小
C.先變小后變大
D.始終不變
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com