【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+4x+c與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E,B,點(diǎn)B坐標(biāo)為(5,0).
(1)求二次函數(shù)解析式及頂點(diǎn)坐標(biāo);
(2)過點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)P在AC上方),作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積.
【答案】(1)y=﹣x2+4x+5,頂點(diǎn)坐標(biāo)為(2,9);(2)當(dāng)P(, )時(shí),S有最大值為.
【解析】試題分析:(1)用待定系數(shù)法求拋物線解析式,并利用配方法求頂點(diǎn)坐標(biāo);
(2)先求出直線AB解析式,設(shè)出點(diǎn)P坐標(biāo)(x,-x2+4x+5),建立函數(shù)關(guān)系式S四邊形APCD=-2x2+10x,根據(jù)二次函數(shù)求出極值;可得P的坐標(biāo).
試題解析:(1)把點(diǎn)A(0,5),點(diǎn)B坐標(biāo)為(5,0)代入拋物線y=ax2+4x+c中,
得: ,解得: ,
∴拋物線的解析式為:y=-x2+4x+5=-(x-2)2+9,
∴頂點(diǎn)坐標(biāo)為(2,9);
(2)設(shè)直線AB的解析式為:y=mx+n,
∵A(0,5),B(5,0),
∴,
解得: ,
∴直線AB的解析式為:y=-x+5,
設(shè)P(x,-x2+4x+5),則D(x,-x+5),
∴PD=(-x2+4x+5)-(-x+5)=-x2+5x,
∵點(diǎn)C在拋物線上,且縱坐標(biāo)為5,
∴C(4,5),
∴AC=4,
∴S四邊形APCD=ACPD=×4(-x2+5x)=-2x2+10x=-2(x-)2+,
∵-2<0,
∴S有最大值,
∴當(dāng)x=時(shí),S有最大值為,
此時(shí)P(, ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,點(diǎn)A、B分別表示數(shù)a、b,且|a+6|+|b-10|=0,記AB=|a-b|
(1) 求AB的值
(2) 如圖,點(diǎn)P、Q分別從點(diǎn)A、B出發(fā)沿?cái)?shù)軸向右運(yùn)動,點(diǎn)P的速度是每秒4個(gè)單位長度,點(diǎn)Q的速度是每秒1個(gè)單位長度,點(diǎn)C從原點(diǎn)出發(fā)沿?cái)?shù)軸向右運(yùn)動,速度是每秒3個(gè)單位長度.經(jīng)過多少秒,點(diǎn)C與點(diǎn)P、Q的距離相等?
(3) 在(2)的條件下,點(diǎn)M從對應(yīng)-8的點(diǎn)出發(fā)沿?cái)?shù)軸向左運(yùn)動,速度是每秒4個(gè)單位長度,在運(yùn)動過程中,MP+MC-3MQ的值是否為定值?若是,求出其值,若不是,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在邊BC、CD上,連接AE、EF、AF,且∠EAF=45°,下列結(jié)論:
①△ABE≌△ADF;
②∠AEB=∠AEF;
③正方形ABCD的周長=2△CEF的周長;
④S△ABE+S△ADF=S△CEF,其中正確的是_____.(只填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若千個(gè)整數(shù)點(diǎn),其順序按圖中“”方向排列,如….根據(jù)這個(gè)規(guī)律探索可得,第個(gè)點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BC是直徑,⊙O的切線PA交CB的延長線于點(diǎn)P,OE∥AC交AB于點(diǎn)F,交PA于點(diǎn)E,連接BE.
(1)判斷BE與⊙O的位置關(guān)系并說明理由;
(2)若⊙O的半徑為4,BE=3,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(4,m),AB⊥x軸,且△AOB的面積為2.
(1)求k和m的值;
(2)若點(diǎn)C(x,y)也在反比例函數(shù)y=的圖象上,當(dāng)-3≤x≤-1時(shí),求函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高新一中新圖書館在“校園書香四溢”活動中迎來了借書高潮,上周借書記錄如下表:(超過100冊的部分記為正,少于100冊的部分記為負(fù))
(1)上星期借書最多的一天比借書最少的一天多借出圖書多少冊?
(2)上星期平均每天借出多少冊書?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=的圖像經(jīng)過B、C兩點(diǎn).
(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖像探索:當(dāng)y>0時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2+(2m+1)x + m2﹣1與x軸交于A,B兩個(gè)不同的點(diǎn).
(1)求:m的取值范圍;
(2)寫出一個(gè)滿足條件的m的值,并求此時(shí)A,B兩點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com