【題目】觀察與思考:閱讀下列材料,并解決后面的問題
在銳角△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.
即:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等在銳角三角形中,若已知三個(gè)元素(至少有一條邊),運(yùn)用上述結(jié)論和有關(guān)定理就可以求出其余三個(gè)未知元素.
根據(jù)上述材料,完成下列各題.
(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A= ;AC= ;
(2)自從去年日本政府自主自導(dǎo)“釣魚島國(guó)有化”鬧劇以來,我國(guó)政府靈活應(yīng)對(duì),現(xiàn)如今已對(duì)釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測(cè)得A在我漁政船的北偏西30°的方向上,隨后以40海里/時(shí)的速度按北偏東30°的方向航行,半小時(shí)后到達(dá)B處,此時(shí)又測(cè)得釣魚島A在的北偏西75°的方向上,求此時(shí)漁政204船距釣魚島A的距離AB.(結(jié)果精確到0.01,≈2.449)
【答案】(1)60,20;(2)漁政船距海島A的距離AB約為24.49海里.
【解析】
(1)利用題目總結(jié)的正弦定理,將有關(guān)數(shù)據(jù)代入求解即可;
(2)在△ABC中,分別求得BC的長(zhǎng)和三個(gè)內(nèi)角的度數(shù),利用題目中總結(jié)的正弦定理求AC的長(zhǎng)即可.
(1)由正玄定理得:∠A=60°,AC=20;
故答案為:60°,20;
(2)如圖:
依題意,得BC=40×0.5=20(海里).
∵CD∥BE,
∴∠DCB+∠CBE=180°.
∵∠DCB=30°,∴∠CBE=150°.
∵∠ABE=75°,∴∠ABC=75°,
∴∠A=45°.
在△ABC中,,
即,
解得AB=10≈24.49(海里).
答:漁政船距海島A的距離AB約為24.49海里.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,.
用直尺和圓規(guī)作的平分線,交于,并在上取一點(diǎn),使,再連接,交于;(要求保留作圖痕跡,不必寫出作法)
依據(jù)現(xiàn)有條件,直接寫出圖中所有相似的三角形,并求出.(圖中不再增加字母和線段,不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BC是弦,∠ABC=30°,過圓心O作OD⊥BC,垂足為E,交弧BC于點(diǎn)D,連接DC,則∠DCB的度數(shù)為( )
A. 30° B. 45° C. 50° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段a和∠EAF,點(diǎn)B在射線AE上 . 畫出△ABC,使點(diǎn)C在射線AF上,且BC=a.
(1)依題意將圖補(bǔ)充完整;
(2)如果∠A=45°,AB=,BC=5,求△ABC的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
如圖,把沿直線平行移動(dòng)線段的長(zhǎng)度,可以變到的位置;
如圖,以為軸,把翻折,可以變到的位置;
如圖,以點(diǎn)為中心,把旋轉(zhuǎn),可以變到的位置.
像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
回答下列問題:
①在圖中,可以通過平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使變到的位置;
②指圖中線段與之間的關(guān)系,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點(diǎn)F,在AB的延長(zhǎng)線上有點(diǎn)E,且EF=ED.
(1)求證:DE是⊙O的切線;
(2)若tanA=,探究線段AB和BE之間的數(shù)量關(guān)系,并證明;
(3)在(2)的條件下,若OF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過A(-1,0),B(2,0),C(0,2)三點(diǎn).
(1)求這條拋物線表示的二次函數(shù)的表達(dá)式;
(2)點(diǎn)P是第一象限內(nèi)此拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OC是∠AOB的角平分線,P是OC上一點(diǎn),PD⊥OA,PE⊥OB,垂足分別為D,E.F是OC上另一點(diǎn),連接DF,EF.求證:DF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“萬州古紅桔”原名“萬縣紅桔”,古稱丹桔(以下簡(jiǎn)稱為紅桔),種植距今至少已有一千多年的歷史,“玫瑰香橙”(源自意大利西西里島塔羅科血橙,以下簡(jiǎn)稱香橙)現(xiàn)已是萬州柑橘發(fā)展的主推品種之一.某水果店老板在2017年11月份用15200元購(gòu)進(jìn)了400千克紅桔和600千克香橙,已知香橙的每千克進(jìn)價(jià)比紅桔的每千克進(jìn)價(jià)2倍還多4元.
(1)求11月份這兩種水果的進(jìn)價(jià)分別為每千克多少元?
(2)時(shí)下正值柑橘銷售旺季,水果店老板決定在12月份繼續(xù)購(gòu)進(jìn)這兩種水果,但進(jìn)入12月份,由于柑橘的大量上市,紅桔和香橙的進(jìn)價(jià)都有大幅下滑,紅桔每千克的進(jìn)價(jià)在11月份的基礎(chǔ)上下降了m%,香橙每千克的進(jìn)價(jià)在11月份的基礎(chǔ)上下降了m%,由于紅桔和“玫瑰香橙”都深受庫(kù)區(qū)人民歡迎,實(shí)際水果店老板在12月份購(gòu)進(jìn)的紅桔數(shù)量比11月份增加了m%,香橙購(gòu)進(jìn)的數(shù)量比11月份增加了2m%,結(jié)果12月份所購(gòu)進(jìn)的這兩種柑橘的總價(jià)與11月份所購(gòu)進(jìn)的這兩種柑橘的總價(jià)相同,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com