【題目】如圖①,是外一點,過點做的兩條切線,切點分別為.若,則點叫做的切角點.
(1)如圖②,的半徑是1,點O到直線的距離為2.若點是的切角點,且點在直線上,請用尺規(guī)作出點;(保留作圖痕跡,不寫作法)
(2)如圖③,在中,,,,是的內切圓.若點是的切角點,且點在的邊上,求的長.
【答案】(1)見解析;(2)的長為或2
【解析】
(1)作圖見詳解,(2)根據特殊直角三角形性質求出三角形的三邊長和內角度數,分類討論找到P點位置,根據特殊的角度即可解題.
解:(1)如圖,點即為所求.
(2)在中,,,,
,.
是的內切圓,
設、、分別與相切于點,
∴OD⊥AC,ON⊥BC,OM⊥AB,BM=BN,CN=CD,AM=AD.
,四邊形為矩形.
,矩形為正方形.
設的半徑為,則,
,.
.
即.
解得.
,.
如圖①,,且、與分別相切于點、,
點是的切角點,即點與點重合,此時.
如圖②,若的切角點在線段上,與相切于點.
由切角點的概念知.
連接,有.
是的半徑,.
,.
.
,.
.
如圖③,若的切角點在線段上.
與上一種情況類似計算可得.
則.
綜上,的長為或2.
科目:初中數學 來源: 題型:
【題目】如圖,AC是ABCD的對角線,在AD邊上取一點F,連接BF交AC于點E,并延長BF交CD的延長線于點G.
(1)若∠ABF=∠ACF,求證:CE2=EFEG;
(2)若DG=DC,BE=6,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC.
(1)如圖1,若O為AB的中點,以O為圓心,OB為半徑作⊙O交BC于點D,過D作DE⊥AC,垂足為E.
①試說明:BD=CD;
②判斷直線DE與⊙O的位置關系,并說明理由.
(2)如圖2,若點O沿OB向點B移動,以O為圓心,以OB為半徑作⊙O與AC相切于點F,與AB相交于點G,與BC相交于點D,DE⊥AC,垂足為E,已知⊙O的半徑長為4,CE=2,求切線AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩個反比例函數和在第一象限內的圖象如圖所示,點P在的圖象上,PC⊥軸于點C,交的圖象于點A,PC⊥軸于點D,交的圖象于點B. 當點P在的圖象上運動時,以下結論:
①
②的值不會發(fā)生變化
③PA與PB始終相等
④當點A是PC的中點時,點B一定是PD的中點.
其中一定不正確的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A在雙曲線y=上,點B在雙曲線y=(k≠0)上,AB∥x軸,過點A作AD⊥x軸于D.連接OB,與AD相交于點C,若AC=2CD,則k=__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.
(1)請你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子長AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車從地出發(fā),沿同一路線駛向地.甲車先出發(fā)勻速駛向地,后乙出發(fā),勻速行駛一段時間后,在途中的貨站裝貨耗時半小時.由于滿載貨物,為了行駛安全,速度減少了,結果與甲車同時到達地,甲乙兩車距地的路程與乙車行駛時間之間的函數圖象如圖所示
(1)的值是________,甲的速度是________.
(2)求乙車距地的路程與之間的函數關系式;
(3)若甲乙兩車距離不超過時,車載通話機可以進行通話,則兩車在行駛過程中可以通話的總時長為多少小時?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】文化是一個國家、一個民族的靈魂,近年來,央視推出《中國詩詞大會》、《中國成語大會》、《朗讀者》、《經曲詠流傳》等一系列文化欄目.為了解學生對這些欄目的喜愛情況,某學校組織學生會成員隨機抽取了部分學生進行調查,被調查的學生必須從《經曲詠流傳》(記為A)、《中國詩詞大會》(記為B)、《中國成語大會》(記為C)、《朗讀者》(記為D)中選擇自己最喜愛的一個欄目,也可以寫出一個自己喜愛的其他文化欄目(記為E).根據調查結果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.
請根據圖中信息解答下列問題:
(1)在這項調查中,共調查了多少名學生?
(2)將條形統(tǒng)計圖補充完整,并求出扇形統(tǒng)計圖中“B”所在扇形圓心角的度數;
(3)若選擇“E”的學生中有2名女生,其余為男生,現從選擇“E”的學生中隨機選出兩名學生參加座談,請用列表法或畫樹狀圖的方法求出剛好選到同性別學生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從熱氣球C上測得兩建筑物A、B底部的俯角分別為30°和60度.如果這時氣球的高度CD為90米.且點A、D、B在同一直線上,求建筑物A、B間的距離.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com