如圖,AB是⊙O的直徑,C,P是上兩點,AB=13,AC=5.
(1)如圖(1),若點P是的中點,求PA的長;
(2)如圖(2),若點P是的中點,求PA的長.
【考點】相似三角形的判定與性質(zhì);勾股定理;等腰直角三角形;圓心角、弧、弦的關(guān)系;圓周角定理.
【專題】幾何綜合題.
【分析】(1)根據(jù)圓周角的定理,∠APB=90°,P是弧AB的中點,所以三角形APB是等腰三角形,利用勾股定理即可求得.
(2)根據(jù)垂徑定理得出OP垂直平分BC,得出OP∥AC,從而得出△ACB∽△0NP,根據(jù)對應(yīng)邊成比例求得ON、AN的長,利用勾股定理求得NP的長,進而求得PA.
【解答】解:(1)如圖(1)所示,連接PB,
∵AB是⊙O的直徑且P是的中點,
∴∠PAB=∠PBA=45°,∠APB=90°,
又∵在等腰三角形△APB中有AB=13,
∴PA===.
(2)如圖(2)所示:連接BC.OP相交于M點,作PN⊥AB于點N,
∵P點為弧BC的中點,
∴OP⊥BC,∠OMB=90°,
又因為AB為直徑
∴∠ACB=90°,
∴∠ACB=∠OMB,
∴OP∥AC,
∴∠CAB=∠POB,
又因為∠ACB=∠ONP=90°,
∴△ACB∽△0NP
∴=,
又∵AB=13 AC=5 OP=,
代入得 ON=,
∴AN=OA+ON=9
∴在Rt△OPN中,有NP2=0P2﹣ON2=36
在Rt△ANP中 有PA===3
∴PA=3.
【點評】本題考查了圓周角的定理,垂徑定理,勾股定理,等腰三角形判定和性質(zhì),相似三角形的判定和性質(zhì),作出輔助線是本題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
如果三角形滿足一個角是另一個角的3倍,那么我們稱這個三角形為“智慧三角形”.下列各組數(shù)據(jù)中,能作為一個智慧三角形三邊長的一組是( 。
A.1,2,3 B.1,1, C.1,1, D.1,2,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在同一平面直角坐標系中,正比例函數(shù)的圖像與反比例函數(shù)的圖像沒有交點,則實數(shù)的取值范圍在數(shù)軸上可表示為 ( )
|
A B C D
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com