【題目】“分塊計數(shù)法”:對有規(guī)律的圖形進行計數(shù)時,有些題可以采用“分塊計數(shù)”的方法.例如:圖1有6個點,圖2有12個點,圖3有18個點,……,按此規(guī)律,求圖10、圖n有多少個點?
我們將每個圖形分成完全相同的6塊,每塊黑點的個數(shù)相同(如圖),這樣圖1中黑點個數(shù)是6×1=6個;圖2中黑點個數(shù)是6×2=12個:圖3中黑點個數(shù)是6×3=18個;……;所以容易求出圖10、圖n中黑點的個數(shù)分別是60、6n.
請你參考以上“分塊計數(shù)法”,先將下面的點陣進行分塊,再完成以下問題:
(1)第5個點陣中有 個圓圈;第n個點陣中有 個圓圈.
(2)小圓圈的個數(shù)會等于271嗎?如果會,請求出是第幾個點陣.
【答案】(1)61,3n2﹣3n+1;(2)小圓圈的個數(shù)會等于271,它是第10個點陣
【解析】
(1)第2個圖中2個小圓圈為一塊,分為3塊,余1,第3個圖中3個小圓圈為一塊,分為6塊,余1;按此規(guī)律得:第5個圖中5個小圓圈為一塊,分為12塊,余1,由此即可求得第n個點陣圖中小圓圈的個數(shù);
(2)代入271,列方程,方程有解則存在這樣的點陣.
解:(1)如圖所示:第1個點陣中有:1個,
第2個點陣中有:2×3 ×(2-1)+1=7個,
第3個點陣中有:3×3 ×(3-1)+1=19個,
第4個點陣中有:4×3 ×(4-1)+1=37個,
第5個點陣中有:5×3 ×(5-1)+1=61個,
…
第n個點陣中有:n×3(n﹣1)+1=3n2﹣3n+1,
故答案為:61,3n2﹣3n+1;
(2)3n2﹣3n+1=271,
n2﹣n﹣90=0,
(n﹣10)(n+9)=0,
n1=10,n2=﹣9(舍),
∴小圓圈的個數(shù)會等于271,它是第10個點陣.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)拋物線T:y=ax2+c(a> 0)與直線L:y=kx-4(k> 0)交A,B兩點(點B在點A的右側(cè)).
(1)如圖,若點A(,-),且a+c=-1.
①求拋物線T和直線L的解析式;
②求△AOB的面積.
(2)設(shè)點C是點B關(guān)于y軸的對稱點,當點A,O,C三點共線時,求實數(shù)c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)科幻小說《實驗室的故事》中,有這樣一個情節(jié),科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):
溫度/℃ | …… | -4 | -2 | 0 | 2 | 4 | 4.5 | …… |
植物每天高度增長量/mm | …… | 41 | 49 | 49 | 41 | 25 | 19.75 | …… |
由這些數(shù)據(jù),科學(xué)家推測出植物每天高度增長量是溫度的函數(shù),且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)請你選擇一種適當?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡要說明不選擇另外兩種函數(shù)的理由;
(2)溫度為多少時,這種植物每天高度的增長量最大?
(3)如果實驗室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實驗室的溫度應(yīng)該在哪個范圍內(nèi)選擇?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:t1,t2是方程t2+2t﹣24=0的兩個實數(shù)根,且t1<t2,拋物線y=x2+bx+c的圖象經(jīng)過點A(t1,0),B(0,t2).
(1)求這個拋物線的解析式;
(2)設(shè)點P(x,y)是拋物線上一動點,且位于第三象限,四邊形OPAQ是以OA為對角線的平行四邊形,求平行四邊形OPAQ的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,當平行四邊形OPAQ的面積為24時,是否存在這樣的點P,使OPAQ為正方形?若存在,求出P點坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016·荊門中考)如圖,天星山山腳下西端A處與東端B處相距800(1+)米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為米/秒.若小明與小軍同時到達山頂C處,則小明的行走速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+mx+m(m>0)的頂點為A,交y軸于點C.
(1)求出點A的坐標(用含m的式子表示);
(2)若直線y=﹣x+n經(jīng)過點A,與拋物線交于另一點B,證明:AB的長是定值;
(3)連接AC,延長AC交x軸于點D,作直線AD關(guān)于x軸對稱的直線,與拋物線分別交于E、F兩點.若∠ECF=90°,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家教育部提出“每天鍛煉一小時,健康工作五十年,幸福生活一輩子”.萬州區(qū)某中學(xué)對九年級部分學(xué)生進行問卷調(diào)查“你最喜歡的鍛煉項目是什么?”,規(guī)定從“打球”,“跑步”,“游泳”,“跳繩”,“其他”五個選項中選擇自己最喜歡的項目,且只能選擇一個項目,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
最喜歡的鍛煉項目 | 人數(shù) |
打球 | 120 |
跑步 | |
游泳 | |
跳繩 | 30 |
其他 |
(1)這次問卷調(diào)查的學(xué)生總?cè)藬?shù)為 ,人數(shù) ;
(2)扇形統(tǒng)計圖中, ,“其他”對應(yīng)的扇形的圓心角的度數(shù)為 度;
(3)若該年級有1200名學(xué)生,估計喜歡“跳繩”項目的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)y=(x﹣1)(x﹣2)(x﹣3)的圖象與性質(zhì).小東對函數(shù)y=(x﹣1)(x﹣2)(x﹣3)的圖象與性質(zhì)進行了探究.下面是小東的探究過程,請補充完成:
(1)函數(shù)y=(x﹣1)(x﹣2)(x﹣3)的自變量x的取值范圍是_______;
(2)下表是y與x的幾組對應(yīng)值.
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … |
y | … | m | ﹣24 | ﹣6 | 0 | 0 | 0 | 6 | 24 | 60 | … |
①m=_____;
②若M(﹣7,﹣720),N(n,720)為該函數(shù)圖象上的兩點,則n=_____;
(3)在平面直角坐標系xOy中,A(xA,yA),B(xB,﹣yA)為該函數(shù)圖象上的兩點,且A為2≤x≤3范圍內(nèi)的最低點,A點的位置如圖所示.
①標出點B的位置;
②畫出函數(shù)y=(x﹣1)(x﹣2)(x﹣3)(0≤x≤4)的圖象.
③寫出直線y=x﹣1與②中你畫出圖象的交點的橫坐標之和為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com